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ANNOTATION 

In this paper, we investigate the following (1) the product of cs-networks, the product of cs*-networks 

is cs*-networks, the image of cs-network by sequence-covering map is cs-network, the image of cs*-

network by 1-sequence-covering map is cs*-network, the product of k-networks is a k-network, the 

image of k-network by compact-covering map is a k-network. 
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АННОТАЦИЯ 

В этой статье мы исследуем следующее: произведение cs-сетей, произведение cs*-сетей - это cs*-

сети, образ cs-сети с помощью карты последовательного покрытия - cs-сеть, образ cs-сети cs* -

сеть с помощью карты покрытия с 1-последовательностью - это cs* -сеть, произведение k-сетей - 

это k-сеть, образ k-сети с помощью карты компактного покрытия - это k-сеть. 

 

Ключевые слова: cs-сеть, cs*-сеть, k-сеть, последовательное покрытие, компактное покрытие. 

 

1. Introduction  

To determine preserving topological properties of topological spaces by product and continuous map is 

one of the central question of general topology. The networks (cs, cs*, k) are characterized by important 

properties of topological spaces. Some properties of networks  (cs, cs*, k) and of covering maps 

(sequence, 1-sequence, compact) are discussed in [1, 3-12]. 
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2. Main Results 

Let 𝑋 be a 𝑇1 topological space and 𝑃 = {𝑃𝛼: 𝑃 ⊂ 𝑋} be a family with 𝑥 ∈ ⋂𝑃𝛼. 

Definition 2.1. A sequence {𝑥𝑛} in 𝑋 is called eventually in 𝑃 if {𝑥𝑛} converges to 𝑥, and there exists 𝑚𝜖𝑁 

such that {𝑥} ∪ {𝑥𝑛: 𝑛 ≥ 𝑚} ⊂ 𝑃. 

Definition 2.2. The family 𝑃 is called a network at point 𝑥 ∈ 𝑋 if for each neighborhood of 𝑥 there exists 

𝑃 ∈ 𝑃 such that 𝑃 ∈ 𝑈. 

Definition 2.3. The family 𝑃 is called a network at point 𝑥 ∈ 𝑋 if for any sequence {𝑥𝑛} converging to 𝑥 

and a neighborhood 𝑈 of 𝑥, there exists 𝑃 ∈ 𝑃such that 𝑃 ⊂ 𝑈 and {𝑥𝑛} is eventually in 𝑃. 

Definition 2.4. The family 𝑃 is called a cs*-network at a point 𝑥 ∈ 𝑋 if whenever {𝑥𝑛} is a sequence 

converging to a point 𝑥 ∈ 𝑈 with 𝑈 open is 𝑋, then {𝑥𝑛𝑖
: 𝑖 ∈ 𝑁} ⊂ 𝑃 ⊂ 𝑈 for some subsequence {𝑥𝑛𝑖

} of 

{𝑥𝑛} and some 𝑃 ∈ 𝑃. 

Proposition 2.5. If the families 𝑃 and 𝑇 are cs-networks respectively at points 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌, then the 

family 𝑃 × 𝑇 is cs-network too at point (𝑥, 𝑦) ∈ 𝑋 × 𝑌. 

Prof. Let 𝐺 be a neighborhood of point  (𝑥, 𝑦) and {𝑥𝑛}, {𝑦𝑛} are some sequences converging to points 𝑥 

and 𝑦 respectively. It is easy to see that there exist neighborhoods 𝑈, 𝑉 of points 𝑥 and 𝑦 respectively, 

such that 𝑈 × 𝑉 ⊂ 𝐺. Moreover, there exist 𝑃 ∈ 𝑃, 𝑇 ∈ 𝑇 and 𝑛0 ∈ 𝑁, 𝑚0 ∈ 𝑁 that {𝑥𝑛} ⊂ 𝑃 ⊂ 𝑈 and 

{𝑦𝑘} ⊂ 𝑇 ⊂ 𝑉 for each 𝑛 > 𝑛0, 𝑘 > 𝑚0. We take 𝑚 = max (𝑛0, 𝑚0), then {(𝑥𝑛, 𝑦𝑛)}  ⊂ 𝑃 × 𝑇 ⊂ 𝐺 for each 

𝑛 > 𝑚. Hence, 𝑃 × 𝑇 is cs-network at point (𝑥, 𝑦). 

Corollary 2.6. The families 𝑃𝑖, 𝑖 = 1, 𝑛̅̅ ̅̅ ̅ are cs-networks at points 𝑥𝑖 ∈ 𝑋𝑖 respectively, then their product 

∏ 𝑃𝑖
𝑛
𝑖=1  is a cs-network too at point (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ∏ 𝑋𝑖

𝑛
𝑖=1 . 

Example 2.7. Let 𝑋 = [= 3, 3] be space. It is easy to see the family 𝑃 = {∪ (1 −
1

𝑛
, 1 +

1

𝑛
)} is a cs-network 

at point 𝑥 = 1 and  𝑇 = {∪ (2 −
1

𝑛
, 2 +

1

𝑛
)} is a cs-network at point 𝑦 = 2, where 𝑛 ∈ 𝑁. For each 

neighborhood 𝐺 of point 𝐴(𝑥, 𝑦) we take 𝑟 = 𝑚𝑖𝑛𝐵∈𝜕𝐺{𝑑(𝐴, 𝐵)}, where 𝑑 is metric in 𝑋. Next we take 𝑈 =

(1 −
𝑟

3
, 1 +

𝑟

3
), (𝑉 = (2 −

𝑟

3
, 2 +

𝑟

3
),  then 𝑈 × 𝑉 ⊂ 𝐺. We can find 𝑛0 ∈ 𝑁 such that for 𝑃 =

(1 −
1

𝑛0
, 1 +

1

𝑛0
), 𝑇 = (2 −

1

𝑛0
, 2 +

1

𝑛0
) this attitude 𝑃 × 𝑇 ⊂ 𝑈 × 𝑉 ⊂ 𝐺 is understandable. Therefore, 

𝑃 × 𝑇 is a cs-network too. 

Proposition 2.8. If the families 𝑃 and 𝑇 are cs*-networks respectively at points 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 then a family 

𝑃 × 𝑇 is cs*-network too at point (𝑥, 𝑦) ∈ 𝑋 × 𝑌. 

Proof. In this case again let 𝐺 be a neighborhood of point (𝑥, 𝑦) and {𝑥𝑛} and {𝑦𝑛} are some sequences 

converging to points 𝑥 and 𝑦 respectively and is known there exists neighborhoods 𝑈, 𝑉 of points 𝑥 and 

𝑦 respectively, such that 𝑈 × 𝑉 ⊂ 𝐺. Moreover, by definition of cs*-network there exist 𝑃 ∈ 𝑃, 𝑇 ∈ 𝑇 and 

subsequences {𝑥𝑛𝑖
: 𝑖 ∈ 𝑁} and {𝑦𝑛𝑗

: 𝑗 ∈ 𝑁} of sequences {𝑥𝑛} and {𝑦𝑛} respectively, such that {𝑥𝑛𝑖
: 𝑖 ∈

𝑁} ⊂ 𝑃 ⊂ 𝑈 and {𝑦𝑛𝑗
: 𝑗 ∈ 𝑁} ⊂ 𝑇 ⊂ 𝑉. Afterward we re-numbered subsequences and we have 

{(𝑥𝑛𝑘
, 𝑦𝑛𝑘

): 𝑘 ∈ 𝑁} ⊂ 𝑃 × 𝑇 ⊂ 𝐺. 
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Hence, 𝑃 × 𝑇 is a cs*-network at the point (𝑥, 𝑦) and we have proved the proposition 2.8. 

Corollary 2.9. The families 𝑃𝑖, 𝑖 = 1, 𝑛̅̅ ̅̅ ̅ are  cs*-networks respectively at points 𝑥𝑖 ∈ 𝑋𝑖, then their product  

∏ 𝑃𝑖
𝑛
𝑖=1  is a cs*-network at the point (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ∏ 𝑋𝑖

𝑛
𝑖=1 . 

Definition 2.10. [8]. Let 𝑓: 𝑋 → 𝑌 be a map continuous and onto  

1) 𝑓 is a sequence-covering map if each convergent sequence (includes its limit point) of 𝑌 is the 

image of some convergent sequence of 𝑋. 

2) 𝑓 is a 1-sequence-covering map if for each 𝑦 ∈ 𝑌, there is 𝑥 ∈ 𝑓−1(𝑦) such that whenever {𝑦𝑛} is 

a sequence converging to 𝑦 in 𝑌 there is sequence {𝑥𝑛} converging to 𝑥 in 𝑋 with each 𝑥𝑛 ∈ 𝑓−1(𝑦𝑛). 

Remark 2.11. 1-sequence-covering map ⇒ sequence-covering map. 

Proposition 2.12. If 𝑓: 𝑋 → 𝑌 is sequence-covering map and 𝑃 is a cs-network at point 𝑥0 ∈ 𝑋, then 

𝑓(𝑃) = {𝑓(𝑃): 𝑃 ∈ 𝑃} is a cs-network at the point 𝑦0 = 𝑓(𝑥0). 

Proof. By definition of continuous map for each neighborhood 𝑉 of point 𝑦0 there exists a neighborhood 

𝑈 of points 𝑥0 such that 𝑓(𝑈) ⊂ 𝑉. Since the family 𝑃 is cs-network at the point  𝑥0, there exists 𝑃 ∈ 𝑃 

such that 𝑃 ⊂ 𝑈. Therefore, there exists 𝑇 = 𝑓(𝑃) ∈ 𝑓(𝑃) such that 𝑇 ⊂ 𝑉. Now we will show that for 

each sequence {𝑦𝑛} converging to 𝑦0 there is 𝑚 ∈ 𝑁 such that {𝑦𝑛} ⊂ 𝑇 for every 𝑛 > 𝑚. We have that 𝑓 

is sequence-covering map, so the sequence {𝑦𝑛} is the image of some sequence {𝑥𝑛} of 𝑋 converging to  

𝑥0. Then there exists 𝑚 ∈ 𝑁 such that {𝑥𝑛} ⊂ 𝑃 for every 𝑛 > 𝑚, so {𝑓(𝑥𝑛)} = {𝑦𝑛} ⊂ 𝑓(𝑃) = 𝑇 for every 

𝑛 > 𝑚. So 𝑓(𝑃) is cs-network at point 𝑦0. 

Proposition 2.13. If 𝑓: 𝑋 → 𝑌 1-sequence covering map and 𝑃 is a cs*-network at point 𝑥0 ∈ 𝑋, then 

𝑓(𝑃) = {𝑓(𝑃): 𝑃 ∈ 𝑃} is cs*-network at point 𝑦0 = 𝑓(𝑥0). 

Proof. Us sufficient show that for every sequence {𝑦𝑛} converging to point 𝑦0 ∈ 𝑉 with 𝑉 open in 𝑌 there 

exists subsequence {𝑦𝑛𝑖
: 𝑖 ∈ 𝑁} and 𝑇 ∈ 𝑓(𝑃) such that {𝑦𝑛𝑖

: 𝑖 ∈ 𝑁} ⊂ 𝑇 ⊂ 𝑉. We have that 𝑓 is 1-sequence 

covering map. Therefore, there exist 𝑧0 ∈ 𝑓−1(𝑦0) and 𝑥𝑛 ∈ 𝑓−1(𝑦𝑛) such that {𝑥𝑛} is a converging 

sequence to 𝑧0. In addition, 𝑃 is a cs*-network at a point 𝑥0, so there exists subsequence {𝑥𝑛𝑖
: 𝑖 ∈ 𝑁} of 

{𝑥𝑛} and 𝑃 ∈ 𝑃 such that {𝑥𝑛𝑖
} ⊂ 𝑃, therefore, {𝑓(𝑥𝑛𝑖

) = 𝑦𝑛𝑖
} ⊂ {𝑦𝑛} ⊂ 𝑓(𝑃) = 𝑇. Hence, 𝑓(𝑃) =

{𝑓(𝑃): 𝑃 ∈ 𝑃} is cs*-network at the point 𝑦0. 

Definition 2.14. 𝑃 is called k-network if whenever 𝐾 ⊂ 𝑈 with 𝐾 compact and 𝑈 open in 𝑋, then 𝐾 ⊂

⋃ 𝑃′ ⊂ 𝑈 for some finite 𝑃′ ⊂ 𝑃.  

Let 𝑓: 𝑋 → 𝑌 be a map continuous and onto. 

Definition 2.15. The map 𝑓 is called compact-covering map if each compact subset of 𝑌 is the image of 

some compact subset of 𝑋.  

Definition 2.16. If the families 𝑃 and 𝑇 are k-networks respectively in 𝑋 and 𝑌, then the family 𝑃 × 𝑇 is 

k-network in 𝑋 × 𝑌. 

Proof. Let 𝐾 be a compact subset of 𝑋 × 𝑌 and 𝐾 ⊂ 𝑈 with 𝑈 open in 𝑋 × 𝑌. We denote by 𝐾1 and 𝐾2 the 

projects of 𝐾 to 𝑋 and 𝑌 respectively. It is easy to see 𝐾1 and 𝐾2 are compact subsets of 𝑋 and 𝑌 

respectively. Let be 𝐾1 ⊂ 𝑈1 and 𝐾2 ⊂ 𝑈2, for some open subsets 𝑈1, 𝑈2. We have that 𝑃 and 𝑇 are k-

networks. So there exist finite subfamilies 𝑃′ = {𝑃𝑖: 𝑃𝑖 ∈ 𝑃, 𝑖 = 1, 𝑛̅̅ ̅̅ ̅} and 𝑇′ = {𝑇𝑗: 𝑇𝑗 ∈ 𝑇, 𝑗 = 1, 𝑚̅̅ ̅̅ ̅̅ } of 𝑃 



   
 

 
 
 

                        ISSN: 2776-1010        Volume 4, Issue 4, April, 2023 
 

 

356 
  
  

and 𝑇 respectively such that 𝐾1 ⊂ {⋃ 𝑃𝑖} ⊂ 𝑈1
𝑛
𝑖=1  and 𝐾2 ⊂ {⋃ 𝑇𝑗} ⊂ 𝑈2

𝑚
𝑗=1 . Then it is easy to see 𝐾 ⊂

(𝐾1 × 𝐾2)⋂𝑈 ⊂ ({⋃ 𝑃𝑖}
𝑛
𝑖=1 × {⋃ 𝑇𝑗})⋂𝑈 ⊂ (𝑈1 × 𝑈2)⋂𝑈 ⊂ 𝑈𝑚

𝑗=1 . 

As you know, {⋃ 𝑃𝑖}
𝑛
𝑖=1 × {⋃ 𝑇𝑗}𝑚

𝑗=1 = ⋃ ⋃ 𝑃𝑖 × 𝑇𝑗
𝑚
𝑗=1

𝑛
𝑖=1 , where 𝑃𝑖 × 𝑇𝑗 ∈ 𝑃 × 𝑇. Hence, 𝑃 × 𝑇 is k-network 

in 𝑋 × 𝑌 too. 

Corollary 2.17. The families 𝑃𝑖 , 𝑖 = 1, 𝑛̅̅ ̅̅ ̅ are k-networks respectively in 𝑋𝑖 then their product ∏ 𝑃𝑖
𝑛
𝑖=1  is k-

network in ∏ 𝑋𝑖
𝑛
𝑖=1 . 

Proposition 2.18. If 𝑓: 𝑋 → 𝑌 is compact-covering map and 𝑃 is a k-network in 𝑋, then 𝑓(𝑃) = {𝑓(𝑃): 𝑃 ∈

𝑃} is k-network in 𝑌. 

Proof. Let be 𝐹 is compact and 𝑉 is open with 𝐹 ⊂ 𝑉. By definition of compact-covering map there exists 

compact subset 𝐾 of 𝑋 such that 𝑓(𝐾) = 𝐹. We have that 𝑓 is continuous map so 𝑓−1(𝑉) is open in 𝑋 

and 𝐾 ⊂ 𝑓−1(𝑉). Otherwise, 𝑃 is a k-network so there exists finite 𝑃′ ⊂ 𝑃 such that 𝐾 ⊂ ⋃𝑃′ ⊂ 𝑓−1(𝑉). 

Thus implies 𝐹 ⊂ 𝑓(⋃𝑃′) = ⋃𝑓(𝑃′) ⊂ 𝑉. Therefore, 𝑓(𝑃) is k-network in 𝑌. 
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