

On Real Aw*-Algebras with Abelian Skew-Hermitian Part

Z.O. Omonillayeva

Fergana Polytechnic Institute

It is known that, unlike to the complex case, in real C^* - algebras R their Hermitian part R_s and skew-hermitian part R_k are not connected by the relation $R_k = iR_s$. In [1] described up to * - isomorphism all real W^* -algebras with abekian Hermitian part. In paper this result is generalized for the real AW^* -algebras. Exactly, it is described up to * -isomorphism all real AW^* -algebras with abelian Hermitian part.

Keywords:

real AW^* -algebra, skew-Hermitian part of real C*-algebras

Preliminaries

ABSTRACT

Recently, along with the theory of W^* - and C^* -algebras, the theory of real W^* - and C^* algebras has also been developed quite well. It is known that, unlike to the complex case, in real C^* -algebras R their hermitian part R_s and skew-hermitian part R_k are not connected by the relation $R_k = iR_s$. In [1] described up to *isomorphism all real W^* -algebras with abelian skew-hermitian part. In paper it is considered real AW^* -algebras with abelian skewhermitian part.

Definition 1

Let A be a Banach ^{*}-algebra over the field *C*. The algebra A is called a C*-*algebra*, if $||AA^*|| = ||A||^2$, for any A \in A.

Definition 2

A real Banach *-algebra \Re is called a real C^* algebra, if $||AA^*|| = ||A||^2$ and an element $1 + AA^*$ is invertible for any $A \in \Re$

It is easy to see that \mathfrak{R} is a real C^* -algebra if and only if a norn on \mathfrak{R} can be extended onto the complexification A=R+iR of the algebra R so that algebra A is a C^* -algebra (see [2], [3] and [4.,5.1.1).

Let B(H) be the algebra of all bounded linear operators on a complex Hilbert space H. A weakly closed *-subalgebra M containing the identity operator **1** in B(H) is called a W^* *algebra*. A real *-subalgebra $R \subset B(H)$ is called a *real* W^* -*algebra* if it is closed in the weak operator topology, $1 \in R$ and $R \cap iR = \{0\}$ (see [2], [3]).

The notion of AW^* -algebras was introduced by Kaplansky as an abstract generalization of weakly closed self-adjoint operator algebras on a complex Hilbert space (W^* -algebras). He showed that much of the "non-spatial theory" of W^* -algebras can be extended to AW^* algebras. By an AW^* -algebra it is meant a C^* algebra such that the left annihilator of any subset is aprincipal left ideal geerated by a projection, i.e. an idempotent self-adjoint element. Every W^* -algebra is an AW^* algebra, but the converse is not true as was shown by Dixmier with an abelian example. Let A be real or complex *-algebra and let S be nonempty subset of A. Put $R(S) = \{ \mathbf{x} \in \mathbf{A} \mid s\mathbf{x} = 0 \text{ for all } \mathbf{s} \in \mathbf{S} \}$

And call R(S) the *right-annihilator* of S. Similarly

 $L(S) = \{x \in A \mid xs = 0 \text{ for all } s \in S\}$

Denotes the *left-annihilator* of S. Following [5] we introduce the following notions. **Definition 3**

A *-algebra *A* is called a *Baer* *-*algebra* if for any nonempty $S \subset A$, R(S) = gA for an appropriate projection *g*.

Since $L(S) = (R(S^*))^* = (hA)^* = Ah$ the definition is symmetric and can be given in terms of the left-annihilator and a suitable projection $h \cdot S^* = \{s^* | s \in S\}$

Defenition 4

A complex or real C^* -algebra, which is a Baer *-algebra is called an (complex or real, respectively) AW^* -algebra

As mentioned above in the paper [1] it was described up to * -isomorohism all real W^* -algebras with abelian skew-hermitian part. Here we have obtained some results from this work for real AW^* -algebras. The main result of this work is the following theorem.

Theorem

Let A be real AW^* -algebra whose skewsymmetric part A_k is abelian. Then

1) For any $x, y \in A_k$, the product xy is a center element of A, i.e. it commutes with every element of A.

2) If the *JC* -algebra A_s is abelian, then the real AW^* -algebra *A* is commutative.

Proof. Since A_{i} is abelian, we have $(xy)^* = xy \in A_s$, and *xy* commutes with every element of A_k . Further, since $xy \in A_s$, it follows that $[a, xy] \in A_k$ for any $a \in A_s$, and therefore [a, xy] commutes with x and with y, and thus with xy, i.e. [[a, xy]xy] = 0. Since the symmetric element xy is normal that [a, xy] = 0 $a \in A_{s}$. Therefore, for any *xy* commutes element with any in

 $R = R_s + R_k$. There exists a central projection z is R_s such that zR_s is of type I_1 (i.e., an abelian JC -algebra) and $(1-z)R_s$ is a type I_2 JC -algebra. The central element z in R_s is automatically central in R. Indeed, for $x \in R_k$, the commutator [z, x] is in R_s , and therefore [z, [z, x]] = 0, and [z, x] = 0, i.e., z commutes with each element of R_k as well. Thus, $R = zR \oplus (1-z)R$, where the real AW^* -algebra zR has the abelian symmetric part zR_s and the abelian skew-symmetric part $(zR)_k = zR_k$. The real W^* -algebra zR is abelian.

References

- Ayupov Sh.A., Rakhimov A.A., Abduvaitov A. Description of the real von Neumann algebras With abelian self-adjoint part. Mathematical Notes. V.71, N3, (2002), 473-476.
- Ayupov Sh.A., Rakhimov A.A., Usmanov Sh.M., Jordan, Real and Lie Structures Operator Algebras. KluwAcad.Pub., MAIA. 418, (1997), 235p.
- 3. Ayupov Sh.A., Rakhimov A.A., Real W^* algebra, Actions of groups and Index theory for real factors. VDM Publishing House Ltd. Beau-Bassin, Mauritius. (2010), 138p.
- Li Bing-Ren. Real operator algebras. World Scientific Publishing Co. Pte. Ltd. (2003), 241p.
- 5. Berbarian S.K. Bear ^{*}-rings. Springer-Verlag, Berlin Heidelberg N.Y. (1972), 309p.
- 6. Sakai S. C^* -algebras and W^* -algebras. Springer, Berlin (1971), 270p.
- 7. Stormer E. Jordan algebras of type *I* . Acta Math., N34, Vol.115, (1966), 165-184.