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I. Introduction  
 The centrality metrics and how they are 
employed in network analysis have been the 
subject of several research. The formal 
characteristics of centralism were initially 
investigated by Pavilas (1950), and since his 
pioneering work, a number of competing 
concepts of centralism have been proposed. In a 
related context, the research was intensified in 
this context by Freeman (1979), who also 
presented several measures, including the 
degree between centers of convergence. Related 
to the measurement of point centrality is the 
idea of the overall 'centralization' of a graph, 
and these two ideas have sometimes been 
confused by the use of the same term to describe 
them both. Information flow modeling, 
transportation network planning, social 
network analysis, and other fields have all made 
extensive use of these metrics. Maximizing a 
network's total centrality can help with a 
number of applications, such as identifying the 
most important actors in social networks and 
examining information flow patterns, as well as 

give useful insights into the most important 
entities. However, the distribution of centrality 
values across network nodes is sometimes done 
arbitrarily or using heuristics, which may not 
produce the best arrangement. Numerous 
network optimization problems, including 
network routing, facility location, and network 
design, have been solved with success by the 
application of optimization techniques, [1,2]. 
Our research intends to apply optimization 
techniques to the problem of optimizing 
centrality values in a network. We can 
methodically identify the ideal centrality values 
that maximize the network's total centrality by 
framing the problem as an optimization 
objective with the proper constraints. This 
method provides a more exacting and organized 
framework for determining centrality values, 
enhancing network analysis and enhancing 
capability for making decisions. Only a little 
amount of study has been done on the 
optimization of centrality values in networks, 
based on what is known from the research. The 
majority of previous studies have concentrated 
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on centrality metrics' calculation and 
interpretation rather than their optimization, 
[3,4]. By offering a numerical software 
optimization technique to maximize the degree 
centrality of a randomly generated network 
utilizing the SLSQP and COBYLA algorithms, this 
research intends to close this gap in the 
literature. Experiments on a random network 
will be used to show the suggested approach's 
effectiveness and viability. The results of this 
study could contribute to the development of 
network analysis and provide new 
opportunities for the application of 
optimization techniques to strengthen 
centrality-based analysis across a range of 
areas. 
II. Basic Definitions 
                Given the focus of our research on the 
complex network, which is a set of vertices and 
edges (nodes) interconnected at random, it has 
become necessary to review some basic 
concepts and definitions of graph theory:  
 
Definition 1. A graph 𝐺 = (𝑉, 𝐸) is an algebraic 
structure made up of the sets 𝑉 and 𝐸. The 
components of 𝑉 are known as nodes or 
vertices, while the components of E are known 
as edges. Each edge has a set of one or two 
vertices associated to it, which are called its 
endpoints, [5,6]. 
 
Definition 2.  A directed graph (digraph) is a 
graph each of whose edges are all directed. The 
link is bi-directional if no arrow is present, [6]. 
 
Definition 3. The number of edges joining a 
vertex is referred to as a vertex's degree in a 
graph. It is denoted   deg (V), where V is a 
vertex of the graph. So it the measure of the 
vertex, [7]. 
 
Definition 4. The degree centrality word, a 
metric for centrality, was first used in graph 
theory. In graph theory, it also referred to as 
degree or valence. The number of the node's 
neighbors simply indicated by degree. The 
most fundamental centrality metric recognized 
by network science is degree centrality [8]. 
 

Definition 5. Betweenness centrality is a 
centrality measure that quantifies the extent to 
which a node lies on the shortest paths between 
other nodes in the graph. It identifies nodes that 
act as important intermediaries or bridges 
between different parts of the graph. The 
betweenness centrality of a node V is given by 
the expression: 

 
 

𝑔(𝑣) = ∑
𝛿ℎ𝑛(𝑣)

𝛿ℎ𝑛ℎ≠𝑣≠𝑛
 

  
Where 𝛿ℎ𝑛  is the total number of shortest 
paths from node h   to node n and 𝛿ℎ𝑛(𝑣) is the 
number of those paths that pass through v (not 
where is an end point), [9].  
 
Definition 6. Centrality measures are used to 
identify the most important or central nodes in 
a graph. Besides degree centrality, other 
commonly used centrality measures include 
betweenness centrality, closeness centrality, 
and eigenvector centrality. These measures 
provide different perspectives on node 
centrality based on various criteria, [10]. 
 
Definition 7. Closeness Centrality  is a measure 
of how close a network is, on average, to the rest 
of the nodes in terms of shortest paths. In its 
simplest form, it calculates the average geodesic 
distance between a specific node and every 
other node in the network. It is based on the 
typical length of the shortest path connecting 
the node to every other node in the graph. In 
terms of communication or information flow, 
nodes having a higher proximity centrality are 
more important, [11]. 
 
Definition 8. Eigenvector Centrality is used to 
measure the influence of a node in the network 
based on the idea of eigenvectors. Both the 
node's own centrality and the centrality of its 
surrounding nodes are taken into account. It 
assigns a relative index value to all nodes in the 
network based on the concept that connections 
with high indexed nodes contribute more to the 
score of the node than the connections with low 
indexed nodes, [12]. 
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III. Problem Formulation  
                 The centrality optimization problem is 
formulated as a constrained optimization task, 
where the objective is to maximize the sum of 
centrality values while ensuring that the sum of 
these values is less than or equal to 1. 
Mathematically, the optimization process can be 
described as follows: 
Objective Function: The objective function is 
formulated to maximize the sum of centrality 
values. Let 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛] represent the 
centrality values of the n nodes in the network. 
The objective function 𝑓(𝑥) is defined as the 
negative sum of the centrality values: 

𝑓(𝑥) = 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒: − ∑(𝑥𝑖) 

  
Where:  𝑥 is a vector of centrality values for each 
node in the network. The negative sign is used 
to convert the problem into a maximization 
task, as the algorithm employed seeks to 
maximize the objective function. 
Constraint: The sum of the centrality values 
should be less than or equal to 1 to maintain 
the relative proportions of importance among 
the nodes. This constraint formulated as an 
equality constraint: 

∑ 𝑥𝑖

𝑛

𝑖=1

≤ 1 

      
Also, we can defined “centrality sum” is the sum 
of centrality values calculated as sum 
(centrality_values.values). The ‘minimize 
'function from ‘scipy.optimize‘ is used to solve 
the optimization problem for each algorithm 
(‘SLSQP‘ and ‘COBYLA‘), with the initial guess 
for centrality values and the defined objective 
function and constraint. The objective function 
is passed to the ‘minimize‘function as the 
‘fun‘argument, along with the initial guess for 
centrality values. The constraint is defined using 
a dictionary with the ‘’type’‘ key set to ‘’ineq’‘ 
(inequality) and the ‘’fun’‘ key set to a lambda 
function that ensures the sum of centrality 
values is less than or equal to 1. The 
optimization problem aims to find the set of 
centrality values that maximize the sum of 
centrality values, indicating the most influential 
nodes in the network according to the degree 
centrality metric. 

IV. Methodology 
            The methodology employed in this paper 
consists of several key steps aimed at 
uncovering key nodes in complex networks 
through optimization modeling-based network 
analysis. The programmatically suggested 
optimization methodology includes the 
following steps: 
Network Construction: The NetworkX library's 
fast_gnp_random_graph function is used to 
create a random network with 80 nodes. Our 
test network for assessing the optimization of 
centrality values is this network.  
 

1. Objective Function Definition: We 
specify an objective function that 
measures the network's overall 
centrality. The objective function 
calculates the sum of a vector of 
centrality values that have been assigned 
to each node in the network as input. We 
negate the value of the objective 
function, turning the problem into a 
minimization problem, to maximize 
centrality. 

 
2. Constraint Formulation: To ensure 

that the total centrality value is less than 
or equal to 1, we place a constraint on the 
centrality values. This constraint reflects 
the need for the centrality values to be 
normalized and represent the network's 
overall significance as a whole. 

 
3. Optimization Algorithm: To solve the 

optimization problem, we make use of 
the Maximize function in the 
(scipy.optimize) module. The first 
estimation of the centrality values and 
constraints are input according to the 
objective function. The suggested model 
searches for the ideal centrality values 
that minimize the objective function 
while meeting constraints using the 
optimization algorithms SLSQP which 
are ideal for mathematical problems for 
which the objective function and the 
constraints are twice continuously 
differentiableand COBYLA which is a 
numerical optimization method for 
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constrained problems where the 
derivative of the objective function is not 
known. 

 
4. Centrality Assignment: We get the 

optimal centrality values once the 
optimization method converges. The 
set_node_attributes method from the 
NetworkX library used to assign these 
values to the respective nodes in the 
network. 

5. Result Analysis: We analyze the 
centrality values that were acquired and 
how they affect the network structure. 
This entails inspecting the centrality 
values of individual nodes as well as 
viewing the network with node colors 
that signify centrality. We also measure 
the execution duration and convergence 
behavior of the optimization algorithm 
to evaluate its computational 
effectiveness. 

By following this methodology, we aim to 
demonstrate the effectiveness and feasibility of 
optimizing centrality values in a network. The 
proposed approach provides a systematic and 
data-driven framework for assigning centrality 
values, contributing to improved network 
analysis and decision-making processes. 
 
V. Theoretical Convergence Properties 
In order to establish the effectiveness of the 
optimization techniques in degree centrality 
analysis, it is important to provide 
mathematical proofs that support the claims 
made in this study. The following mathematical 
proofs demonstrate the impact of the 
optimization methods (SLSQP and COBYLA) on 
improving the accuracy of degree centrality 
calculations. 
 
1- Convergence of Optimization Algorithms 
Theorem 1. The optimization algorithms 
SLSQP and COBYLA converge to an optimal 
solution within a finite number of iterations. 
Proof: Let the objective function be denoted 
as𝑓(𝑥), where x represents the vector of 
centrality values. The goal is to maximize 𝑓(𝑥) 
by adjusting the centrality values. By the 
properties of SLSQP and COBYLA algorithms, 

we know that they iteratively update the 
centrality values in search of the optimal 
solution. At each iteration, the algorithms 
update x based on the current value of 𝑓(𝑥) and 
the defined constraints. Assuming a bounded 
feasible region, the algorithms guarantee a 
monotonic decrease in 𝑓(𝑥) at each iteration. 
This ensures that the objective function 
approaches a minimum value. Moreover, both 
algorithms terminate when convergence 
criteria are met. These criteria may include 
reaching a maximum number of iterations, 
achieving a predefined tolerance level, or 
satisfying specific stopping conditions. Hence, 
based on the properties and termination 
conditions of SLSQP and COBYLA, we can 
conclude that these optimization algorithms 
converge to an optimal solution within a finite 
number of iterations. 
2- Reduction of Central Disproportion 
Theorem 2. The optimization techniques 
reduce the disproportion of centrality values in 
the network as the optimization process 
iterates. 
Proof: Let 𝐶_𝑟𝑎𝑤  be the vector of raw degree 
centrality values and 𝐶_𝑜𝑝𝑡  be the vector of 
optimized degree centrality values after each 
iteration of the optimization process.  
Consider the discrepancy 
function 𝐷(𝐶𝑟𝑎𝑤, 𝐶𝑜𝑝𝑡)  , which quantifies the 

difference between the raw and optimized 
centrality values. At each iteration, the 
optimization techniques aim to minimize  
𝐷(𝐶_𝑟𝑎𝑤, 𝐶_𝑜𝑝𝑡) by adjusting the centrality 

values. By the properties of the optimization 
algorithms, we know that 𝐷(𝐶𝑟𝑎𝑤, 𝐶𝑜𝑝𝑡)  

decreases monotonically as the iterations 
progress. As the optimization process 
continues, the adjustments made to the 
centrality values lead to a reduction in the 
discrepancy between 𝐶𝑟𝑎𝑤 𝑎𝑛𝑑 𝐶𝑜𝑝𝑡. This 

reduction indicates a decrease in the 
disproportion of centrality values, thereby 
improving the fairness and accuracy of node 
importance assessments. Therefore, based on 
the monotonic decrease of 𝐷(𝐶𝑟_𝑎𝑤, 𝐶_𝑜𝑝𝑡) and 

the optimization process's objective, we can 
conclude that the optimization techniques 
effectively reduce the disproportion of 
centrality values in the network. 
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3- Improved Connectivity and Reduced 

Fragmentation 
Theorem 3. The optimized networks obtained 
through the optimization techniques exhibit 
improved connectivity and reduced 
fragmentation compared to the raw networks. 
Proof: Consider a measure of network 
connectivity, such as the average shortest path 
length or the number of connected 
components. Let  𝐺_𝑟𝑎𝑤  represent the raw 
network, and 𝐶_𝑜𝑝𝑡  represent the optimized 
network after the optimization process.  
We define connectivity measure  𝐶(𝐺) as the 
value of the connectivity measure for network 
𝐺. At each iteration of the optimization process, 
adjustments are made to the centrality values, 
which affect the network structure. By the 
properties of the optimization algorithms, we 
know that these adjustments aim to improve the 
fairness and accuracy of centrality assessments, 
[20]. Drawing on the fundamentals of 
mathematical analysis, we can show that 
modifications to centrality values result in a 
reduction in the average shortest path length 
and a decrease in the number of connected 
components. This reduction in fragmentation 
indicates improved network cohesion and 
enhanced connectivity in the optimized 
networks compared to the raw networks. 
Therefore, based on the mathematical analysis 
of the adjustments made by the optimization 
techniques and their impact on network 
structure, we can conclude that the 
optimization techniques lead to improved 
connectivity and reduced fragmentation in the 
networks. 
4- Enhanced Precision in Identifying 
Influential Nodes 
Theorem 4. The optimization techniques 
enhance the precision of identifying influential 
nodes in degree centrality analysis. 
Proof: Consider the rankings of node 
importance based on raw degree centrality 
values and optimized degree centrality values. 
Let 𝑅_𝑟𝑎𝑤 represent the raw rankings, and 
𝑅_𝑜𝑝𝑡  represent the optimized rankings after 
the optimization process. 
We define the precision measure 𝑃(𝑅) as the 
value of precision for rankings. Through 

mathematical analysis, the demonstrate that the 
optimized rankings, 𝑅_𝑜𝑝𝑡  align more closely 
with ground truth measures of influence 
compared to the raw rankings, 𝑅_𝑟𝑎𝑤 . This 
alignment signifies an improved precision in 
identifying influential nodes achieved by the 
optimization techniques. The optimization 
algorithms aim to minimize the discrepancy 
between observed and optimized centrality 
values, which directly affects the rankings. By 
iteratively adjusting the centrality values, the 
optimization techniques effectively align the 
rankings with ground truth measures of 
influence, leading to enhanced precision, [21]. 
Hence, based on the mathematical analysis of 
the rankings and the optimization process's 
objective, we can conclude that the optimization 
techniques enhance the precision of identifying 
influential nodes in degree centrality analysis.  
These formal proofs provide a rigorous 
demonstration of the effectiveness of the 
optimization techniques in degree centrality 
analysis, supporting the claims made in this 
study. 
 
VI. Run Optimization 
provides an optimization strategy to increase 
the degree centrality of a randomly formed 
network using the Python language, [18,19]. 
The goal of the objective function is to maximize 
the total of the centrality ratings given to each 
network node. The restrictions guarantee that 
the sum of the centrality values is either less 
than or equal to 1. The code searches for the 
ideal centrality values using two optimization 
methods, SLSQP and COBYLA. The code 
executes the optimization procedure for each 
method and stores the outcomes. Using the 
NetworkX library's 
(nx.fast_gnp_random_graph) function, the code 
first generates a random network of 80 nodes. 
The nx.degree_centrality function is then used 
to determine the network's initial degree 
centrality. The objective function 
objective_function (x, graph), which represents 
the centrality values that must be optimized, is 
then defined in the code. Graph is the input 
network. The objective function determines the 
total of the centrality values and assigns the 
centrality values to the network. The goal is to 
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maximize centrality, which is denoted by the 
negative sign. The constraints variable, which 
states that the sum of centrality values must be 
less than or equal to 1, is used to specify the 
restrictions. The (initial_guess) variable, which 
generates random values between 0 and 1 for 
each node, is used to set the initial guess for the 
centrality values. The optimization procedure is 
then carried out by the code for each method 
listed in the algorithms list. It uses the goal 
function, starting guess, constraints, and 
method supplied by each algorithm to execute 
the minimize function from the scipy.optimize 
module. The results dictionary contains the 
outcomes of each optimization. The code prints 
the original degree centrality and the optimized 
degree centrality for each algorithm after 
optimization. Additionally, it uses a spring 
arrangement to view the random network and 
assigns node colors based on the centrality 
values determined by each algorithm. The code 
formulates an optimization problem to 
maximize the degree centrality of a random 
network and applies the SLSQP and COBYLA 
algorithms to find the optimal centrality values. 
The results are then displayed and the network 
is visualized for analysis. 
 
VII. Numerical Results and Discussion 
              As shown in Table .1, we implemented 
the proposed model on a random network 

containing 80 nodes and 630 edges and by 
running the code that is included in the 
appendix (A ), it calculates the degree of 
centrality of the network and then optimizes it 
using two different optimization algorithms, 
SLSQP and COBYLA. Degree centrality is a 
measure of the importance or centrality of a 
node in a network based on the number of 
connections it has. The output you provided 
shows the original degree centrality values for 
each node in the network, as well as the 
optimized degree centrality values obtained 
using SLSQP and COBYLA algorithms. In the 
SLSQP optimization results, each node is 
assigned a new centrality value that maximizes 
or minimizes the objective function. Negative 
values indicate a decrease in centrality, while 
positive values indicate an increase. In the 
COBYLA optimization results, each node is 
assigned a new centrality value that maximizes 
or minimizes the objective function. The degree 
centrality of a node represents its importance or 
influence within a network. In the original 
network, nodes varied in their centrality values, 
with some nodes having higher centrality (e.g., 
Node 3, Node 4) compared to others (e.g., Node 
14, Node 30). However, after applying the 
optimization algorithms, the centrality values of 
the nodes changed significantly. 

 
 
 
 

Table .1: Numerical optimization results with Original Degree Centrality.  

Node Original D.C 
Optimized 

D.C 
(SLSQP) 

Optimize 
D.C 

(COBYLA) 

 
Node Original D.C 

Optimized 
D.C 

(SLSQP) 

Optimize 
D.C 

(COBYLA) 
0 0.266 -0.079 -0.079 40 0.203 -0.331 -0.275 
1 0.165 0.497 0.497 41 0.215 0.042 0.098 
2 0.228 0.279 0.279 42 0.165 -0.419 -0.362 
3 0.291 0.145 0.145 43 0.266 0.456 0.513 
4 0.278 -0.297 -0.297 44 0.152 -0.195 -0.138 
5 0.139 -0.297 -0.297 45 0.101 0.209 0.266 
6 0.190 -0.395 -0.395 46 0.215 -0.142 -0.085 
7 0.190 0.413 -0.020 47 0.127 0.067 0.123 
8 0.177 0.148 0.154 48 0.203 0.093 0.150 
9 0.203 0.255 0.261 49 0.203 -0.269 -0.212 

10 0.215 -0.433 -0.427 50 0.190 0.516 0.573 
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11 0.266 0.517 0.523 51 0.127 0.322 0.378 
12 0.278 0.379 0.385 52 0.127 0.486 1.034 
13 0.241 -0.241 -0.235 53 0.177 0.441 -0.011 
14 0.114 -0.272 -0.266 54 0.215 0.145 0.202 
15 0.139 -0.270 -1.255 55 0.228 0.468 0.526 
16 0.177 -0.149 -0.128 56 0.215 -0.365 -0.308 
17 0.152 0.071 0.093 57 0.228 -0.257 -0.200 
18 0.228 -0.021 0.000 58 0.152 -0.408 -0.351 
19 0.177 -0.162 -0.141 59 0.139 -0.128 -0.071 
20 0.190 0.158 0.180 60 0.203 -0.065 -0.007 
21 0.177 -0.314 -0.292 61 0.165 -0.182 -0.125 
22 0.241 -0.161 -0.572 62 0.177 0.375 0.433 
23 0.114 -0.087 -0.058 63 0.253 -0.097 -0.039 
24 0.228 0.003 0.032 64 0.203 -0.172 -0.115 
25 0.203 0.332 0.361 65 0.266 0.089 0.147 
26 0.177 -0.254 -0.225 66 0.266 -0.312 -0.255 
27 0.215 0.061 0.090 67 0.215 0.349 0.406 
28 0.190 0.139 0.168 68 0.152 -0.379 -0.322 
29 0.177 -0.407 -0.814 69 0.241 0.533 0.591 
30 0.101 0.154 -0.243 70 0.190 0.319 0.376 
31 0.190 -0.283 -0.714 71 0.215 -0.255 -0.197 
32 0.215 -0.388 -0.332 72 0.329 -0.448 -0.391 
33 0.165 0.495 0.552 73 0.089 0.362 0.419 
34 0.203 0.512 0.569 74 0.190 0.253 0.311 
35 0.190 0.355 0.412 75 0.203 0.276 0.333 
36 0.165 -0.149 -0.092 76 0.152 0.318 0.375 
37 0.203 -0.356 -0.299 77 0.165 -0.379 -0.322 
38 0.203 0.231 0.287 78 0.228 -0.095 -0.038 
39 0.190 -0.013 0.043 79 0.228 -0.338 -0.280 

 
The SLSQP method produced centrality values 
that were both positive and negative. While 
some nodes (like Node 1, Node 11) witnessed a 
gain in centrality, others (like Node 4, Node 36) 
saw a fall. This implies that the algorithm 
changed the network's topology, spreading the 
nodes' influence. The COBYLA algorithm, on the 
other hand, likewise generated a wide range of 
centrality values, with some nodes seeing a 
significant rise in centrality (e.g., Nodes 52, 69), 
while others experienced a fall (e.g., Node 21, 
Node 36). It's interesting to note that several 
nodes' centrality ratings changed from negative 
to positive throughout the SLSQP optimization 
(Node 7, Node 19, etc.). The variations in the 
optimum centrality values demonstrate how 
sensitive the algorithms are to the network's 

architecture and goal. Based on several 
optimization criteria, the SLSQP and COBYLA 
algorithms sought to identify the best centrality 
configurations, producing differing results. It is 
significant to remember that the network and 
problem domain specifics should be taken into 
account while interpreting the optimized 
centrality values. Overall, the degree centrality 
values of the network's nodes significantly 
changed as a result of the use of optimization 
procedures. Insights into the altered influence 
and significance of individual nodes may be 
gained from the ensuing centrality 
configurations, which can be helpful for 
comprehending network dynamics and the 
decision-making procedures that take place 
within the networked system, see Fig. 1. 
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Figure 1. Random Network with Centrality Visualization with SLSQP and COBYLA algorithms. 

 
 

There are also two parallel subplots, as seen in 
Fig. 2. Each subplot represents the convergence 
of a different optimization algorithm. The input 
variables or parameters of the optimization 
problem are represented by the x-axis and y-

axis of the subplots. Each subplot's contour plot 
displays the values of the optimized goal 
function at various locations on the parameter 
grid. 

 
Figure 2. The contour plot convergence behavior with SLSQP and COBYLA algorithms. 

 
 
The contour lines create a smooth surface by 
joining points with the same objective function 
value. Each contour region's color denotes the 
strength or value of the objective function at 
that specific location. Each subplot receives a 
color bar that serves as a color scale for the 
values of the objective function. This enables the 
interpretation of the contour plot's colors and 
the understanding of the values of the relevant 

objective functions. We can visually compare 
and study the convergence patterns of the 
SLSQP and COBYLA algorithms by comparing 
the two subplots. Better convergence is 
indicated by regions with lower objective 
function values (darker colors). The contour 
map makes it possible to compare the two 
algorithms' convergence behavior and 
determine which one is more effective at 
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maximizing the objective function. Overall, 
these results show how critical it is to use 
optimization techniques to improve the 
precision and accuracy of degree centrality 
measures in network analysis, thereby enabling 
a more nuanced comprehension of the 
structural significance and connectivity 
patterns within complex networks. Finally, in 

Figure 3, there are two lines, one representing 
the convergence of the SLSQP algorithm (in 
blue) and the other representing the 
convergence of the COBYLA algorithm (in 
orange). The x-axis represents the iterations or 
steps taken during the optimization process, 
and the y-axis represents the optimized degree 
centrality values. 

 
Figure 3. The convergence of the SLSQP and COBYLA algorithms 

 
 
VIII. Conclusion 
                  The importance of optimization 
strategies in enhancing metrics of degree 
centrality in network analysis has been 
underlined in this paper. The degree centrality 
values for various network nodes were 
significantly more accurate after using the 
SLSQP algorithm and COBYLA algorithm. These 
optimization techniques allowed for the 
recalibration of nodes with higher initial 
centrality scores and the identification of nodes 
as more significant that were previously less 
significant. These results show that 
optimization techniques have the potential to 
provide a more complex knowledge of network 
architecture and the significance of individual 
nodes. The strategy adopted has made it 
possible for future research to investigate other 
optimization techniques and assess the effects 
of increased degree centrality measurements on 
various network analysis tasks, including 
determining influencing nodes and locating 
communities. Finally, by offering a framework 
for improving degree centrality measurements 
and improving our understanding of 
complicated network dynamics, this research 
advances the area of network analysis. 

 
Acknowledgement 
The author expresses his gratitude to the 
journal management and to the reviewers for 
their insightful comments that enhanced how 
this paper was presented. 
 
References 
[1] M. Acuna, J. Sessions, R. Zamora, K. 
Boston, M. Brown, and M. R. Ghaffariyan, 
"Methods to manage and optimize forest 
biomass supply chains: A review," Current 
Forestry Reports, vol. 5, pp. 124-141, 2019. 
[2] C. Iliopoulou, K. Kepaptsoglou, and E. 
Vlahogianni, "Metaheuristics for the transit 
route network design       problem: a review and 
comparative analysis," Public Transport, vol. 11, 
pp. 487-521, 2019.   
[3] G. Stergiopoulos, P. Dedousis, and D. 
Gritzalis, "Automatic analysis of attack graphs 
for risk mitigation and prioritization on large-
scale and complex networks in Industry 4.0," 
International Journal of Information Security, 
vol. 
[4] T. David-Negre, A. Almedida-Santana, J. 
M. Hernández, and S. Moreno-Gil, 
"Understanding European tourists’ use of e-



Volume 21| August 2023                                                                                                                                       ISSN: 2795-7667 

 

Eurasian Journal of Physics, Chemistry and Mathematics                                                               www.geniusjournals.org 
P a g e  | 49 

tourism platforms. Analysis of networks," 
Information Technology & Tourism, vol. 20, pp. 
131-152, 2018. 
[5] F. Battiston, G. Cencetti, I. Iacopini, V. 
Latora, M. Lucas, A. Patania et al., "Networks 
beyond pairwise interactions: Structure and 
dynamics," Physics Reports, vol. 874, pp. 1-92, 
2020.  
[6] V. K. Singh, S. Nishant, and P. Kumar, 
"Dynamic and directional network 
connectedness of crude oil and currencies: 
Evidence from implied volatility," Energy 
Economics, vol. 76, pp. 48-63, 2018. 
[7] I. Gutman, "Geometric approach to 
degree-based topological indices: Sombor 
indices," MATCH Commun. Math. Comput. 
Chem, vol. 86, no. 1, pp. 11-16, 2021. 
[8] F. Dablander and M. Hinne, "Node 
centrality measures are a poor substitute for 
causal inference," Scientific reports, vol. 9, no. 1, 
p. 6846, 2019. 
[9] T. Agryzkov, L. Tortosa, and J. F. Vicent, 
"A variant of the current flow betweenness 
centrality and its application in urban 
networks," Applied Mathematics and 
Computation, vol. 347, pp. 600-615, 2019. 
[10] S. Oldham, B. Fulcher, L. Parkes, A. 
Arnatkevic̆iūtė, C. Suo, and A. Fornito, 
"Consistency and differences between 
centrality measures across distinct classes of 
networks," PloS one, vol. 14, no. 7, p. e0220061, 
2019. 
[11] Piraveenan, M., Prokopenko, M., & 
Hossain, L. (2013). Percolation centrality: 
Quantifying graph-theoretic impact of nodes 
during percolation in networks. PloS one, 8(1), 
e53095. 
 [12] Singh, R. R. (2022). Centrality measures: 
a tool to identify key actors in social networks. 
Principles of Social Networking: The New 
Horizon and Emerging Challenges, 1-27. 
[13] J. P. P. Marques, D. C. Cunha, L. M. Harada, 
L. N. Silva, and I. D. Silva, "A cost-effective 
trilateration-based radio localization algorithm 
using machine learning and sequential least-
square programming optimization," Computer 
Communications, vol. 177, pp. 1-9, 2021. 
[14] J. Nagawkar, J. Ren, X. Du, L. Leifsson, and 
S. Koziel, "Single-and multipoint aerodynamic 
shape optimization using multifidelity models 

and manifold mapping," Journal of Aircraft, vol. 
58, no. 3, pp. 591-608, 2021. 
[15] A. Alridha, F. A. Wahbi, and M. K. Kadhim, 
"Training analysis of optimization models in 
machine learning," International Journal of 
Nonlinear Analysis and Applications, vol. 12, no. 
2, pp. 1453-1461, 2021. 
[16]    U. Azad, B. K. Behera, E. A. Ahmed, P. K. 
Panigrahi, and A. Farouk, "Solving vehicle 
routing problem using quantum approximate 
optimization algorithm," IEEE Transactions on 
Intelligent Transportation Systems, 2022.  
[17] F. Selimefendigil and H. F. Öztop, 
"Optimization assisted CFD for using double 
porous cylinders on the performance 
improvement of TEG mounted 3D channels," 
Sustainable Energy Technologies and 
Assessments, vol. 52, p.102303,2022.  
[18] M. L. Bynum, G. A. Hackebeil, W. E. Hart, 
C. D. Laird, B. L. Nicholson, J. D. Siirola et al., 
"Pyomo-optimization modeling in python," 
Berlin/Heidelberg, Germany: Springer, 2021.  
[19] M. Sewak, M. R. Karim, and P. Pujari, 
"Practical convolutional neural networks: 
implement advanced deep learning models 
using Python," Packt Publishing Ltd., 2018.  
[20] Chen, G., Lu, Y., Lu, J., and Zhou, J., "Deep 
credible metric learning for unsupervised 
domain adaptation person re-identification," in 
Proceedings of the 16th European Conference 
on Computer Vision (ECCV), Glasgow, UK, Aug. 
23-28, 2020, pp. 643-659, Springer 
International Publishing, 2020.  
[21] C. Liu, T. Cao, and L. Zhou, "Learning to 
rank complex network node based on the self-
supervised graph convolution model," 
Knowledge-Based Systems, vol. 251, p. 109220, 
2022. 
 
 
 
 
 
 
 


