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In this study, we provide novel spectral conjugate gradient optimization techniques
and analyze their convergence. Numerical tests reveal that our approaches can
perform better than those already in use. the spectral conjugate gradient methods are
commonly used for unconstrained optimization, especially when the dimension is
large. Updated spectral techniques for tackling unconstrained optimization issues are
developed based on curvature information. The strategies provided meet the
descending criteria. The conjugate gradient algorithm is a powerful iterative method
based on the parameters' conjugate gradient. We analyze the convergence properties
of the algorithm and then give some numerical results which show the modified
algorithms are robust and efficient. Furthermore, it is demonstrated that the
innovative spectral techniques are globally convergent. The numerical findings show
that the suggested techniques are successful when compared to the Fletcher —-Reeves
method.

ABSTRACT

conjugate gradient, spectral type(SCG), Strong Wolfe-Powel Line
search(SW), Sufficient decent property, Global Converge,
Unconstrained optimization

Keywords:

1. Introduction

The CG-method 's quick convergence and minimal storage requirement, it is widely utilized for
optimization (Hager and Zhang 2006)[1]. For the continuously differentiable objective function f, we
seek to solve the following mathematically optimization(unconstrained) problem f:R"™ — R:

Minimim {f (x) where x € R"}, (1)

Where g, = Vf(x,) defines the gradient and f:R™ — R is a continuously differential nonlinear
function, and x, is any beginning approximation to the solution to problem (1).
The CG method iterates formula is provided by following:

xk+1=xk+akdk, VkZO (2)

Where d;, is the search direction & a, is a positive step length ,[2]. Step size is established by :

dk =
{ —gr ifk=0 (3)
=gk + Brdi-1 ,ifk=1
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Generally , Where B, is a scalar that is calculated using a different formula depending on the

conjugate gradient technique being employed , There are six main types of S, which include

:Hestenes & Stiefel method (HS, 1952)[3], Fletcher & Reeves method ( FR, 1964) [4], Polka&Ribiere-
Polak method (PRP, 1969) [5], Conjugate Descent [6] (CD) and the Liu & Storey (LS, 1991) [7], Dai-
Yuan (Dy, 1999) method [8] .

B HS _ gk (Gk—9k-1) . B FR _ gk gk | B PRP _ gk (Gk—9k-1) .
Gr=gi—DT dig—r " 7K lgr-1112 * FK lgrll?
B,P = — 9k Jic_, B LS = Gk Vi1 BoY = i Ik
K Gi—1 A1’ K ~Gh—q k-1’ K Vi-1 A1
The convergence of CG-method has been researched by several authors where y,_; =

9rx — gx—1 Under various line-searches, some have estimated the step length using an exact-line-
search (ELS), but often «a, is created via an inexact line search, such as the Wolfe line search
condition (WL) which is described by

f(x +ed)< f(x)+5a,0,d,

(4)
deg(x +d,)>odfg,
Alternative definitions for the Strong Wolfe Line search (SWL):
f(x, +a,d)< f(x)+dxg.d,
(5)

‘g(xk "‘akdk)Tdk‘SO" g;dk‘

where 0 <8<%<a<1.

The spectral Cojugate gradient method (SCG) , which Barzilai and Borwein that the firstly proposed
[9], a well-known approach, can be applied to address the issue (1). The direction dj,; is defined by

dk =
—O0r gk + Brdi-1 Lif k=1

The parameter of spectral gradient is 6, , where? Later, Raydan developed the SCG-method in [10]
for high dimention unconstrained optimization problems.The SCG-method's interesting
characteristic is that it simply requires gradient directions to guarantee global convergence for each
line search . The SCG-method performs better than the advanced CG approach in a surprising
number of recognized cases . Birgin and Martinez[10] found that their SCG-method is globally
convergent under several fair assumptions . The SCG-method cannot , however , be called on to
generate the right direction . Because of this, Jiang et al., Wolfe line search, and Andrei [11] stated
the descending SCG-algorithm. Following on an improved CG algorithm put forward by Zhang et al.,
numerous writers have developed the SCG-method with appropriate descent condition [1], [12]-
[15] .

2. The descent property and a New spectral CG-method
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We shall compute a new spectral parameter @y in this section. The SCG-method's typical search
direction is as follows:

dp = =019k +Brdr-1,Vk=21 )

Second, using the conjugate parameter approach from reference [16] with the form
= )2
leal® o H= 8
Ngr—1 1%+ p|dT—1 gi| ®

llgr 112~

BIY —
]k
2

Using the hybrid concept of Reference[17] completely, we suggest a new conjugate parameter in the
way shown below .

2
itz — 8 det)
pAL = |1 |l (9)
Y omax {llgi-1 12 AT (9 —9,_,)}
So far, a fundamental understanding of our SCGM has been developed. Consequently, a new SCGM is

proposed, and its theoretical characteristics and numerical performance are evaluated and reported.
Multiply both sides of the second element of the expression (7) by y,_1, and we will get

d'y Yie1 = =0k 9", Vi1 (10)
+Br dTi-1 Vi1

Actual algorithms, on the other hand, typically use inexact line searches rather than exact line

searches. Dai and Liao [18] recently replaced the conjugation criterion.

by the condition:

T _ T
Ay Y1 = —tg | Sk-1 (11)
= 0,wheret=0
Substitutes (8) and (11) in (10), we get:
0= -0, 9", Vi1 + B, d" -1 Vi
2
g’ g _(ng di-1)
. 9. T kel dT_dy, Jr
= =09 } Yk-1 T k-1 Yk-1
k max {||gx-111% dTx-1 (9 —9,_4)}
T 2
9, di
9", 9k d o1 Vi _(Tk—) d"v_1 Yi-1
0r9" Vi1 = £t Bt
k max{llgi_1 112 A" (gr — g k—l)}
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2
P gt @ dir) 4
9 9k d k-1 Vi ATy dp, & k1 Vi1

max {”gk—l 12, dTy_4 (gk -39 k—l)} - max {”gk—l 12, dTp_q (Qk -9 k—1)}

09", V-1 =

0k 9" Vi1 9", 9k d"i1 Vi
9" Vier max{llge-1 1% a1 (9k —9,_,)}

(97, di-1)(9", di-1) a7
dT,_1dp 1 k-1 Yk-1

 max {lgr-11?, dTh-1 (9 — 9, )} 97, Vi1

9" Vi1 (12)

The parameter B4 asin 9, note that,if 1< 6) <0, thenwe put8;, = 1. ie (6) decrease to
(3)

New ( SCG) algorithm :

Procedure 1: Assuming a starting pointxy € R® ,e=10"°>0, Let dy = —g,, setk=1
Procedure 2: check ||gk || < € , terminate. else go to step 2.

Procedure 3: Determine a step length a;, by (4).

Procedure 4: Generate new points through (2), calculate the gradient gx,1 = g (X1 ), test
lgx+1 |l < € , terminate . Otherwise , continue.

Procedure 5: Calculate the spectral parameter 84 by (12),if 0< 8, <1

,put 8, = 1; Else, evaluate the conjugate parameter [)",‘:” represented by (9).

Procedure 6: The direction d;, defined in (6).

Procedure 7: If the Powel restart requirements are met,

197, Gr-1]| = 0.2 llgs II? (13)
Put d; = —gy go to 3; otherwise, continue.

Procedure 8: Put k = k+ 1 and go to 4.
Now comes the verification of the algorithm's descent condition for the suggested parameters:

Theorem (1)
Suppose the SCG-method with search direction equation (6) and the parameter g4~ giver in (9),
and the step length a, is obtained by (SWL) . The following sufficient descent property holds :

9", di < —nllgll*> , n>0,Vk

>0 (14)
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Proof: To prove this assertion, we will use mathematical induction, if k=0, gld, = —|lg, ||%.
Therefore, condition (14) holds true. Now we assume that k > 0 is correct. Condition (14) also hold,
now multiply both sides of (6) by ng , we get

g7, di = — 0% g ll* + AT, ng di-1

d’i_1 Vi
Tod = - g, Y g e
I 1 O kgl Vi

+ ﬁAlIk ng dk—l

We have,
d’y_ Yk-1
Td:_ALI<k1 I ”z
9k b= =P \mgr o 19 (15)
Used one side — ng dk—1> of (13) in
(16), we get
9iY-1r =975 Gk — Gi-1)
2 T (16)
= lgell®— 9} Gr-1
I Vi1 <llgell>+0.2 g lI?
= 1.2 |lgk II? (17)
And used another sides of
(13)in (16), we get
Ik Vi1 = gll> =02 g I?
= 0.8 |lgg II* (18)

by assumption, df_; gx_1 <
0, it follows that
dr =y ,d dr T .d
k-19k = YVi-1%k-1 Qg1 9k-1 < Yk-1 Qi1 -
ie. di_1 gk < Yi-1dr1 (19)
Follows by (19) ,
Yic1dk-1 = (g — r-1)"dk-1 and SWL, we get

~(1-0) grdi-1 < Yirdiy < —(1+

Setting equation (13), (17- o) g} dj_4 (20)
20) in equation (15)
9" di < — B ( KT gy 112~ ]y iy )
k k ng Vie
— ﬁALI (1 _ i ) d y
1
<-p, (1 _E)d k-1 Gk
Also using the reality ATB < %(AZ + B?)
1
g di <= B, (1= ) Uy 17+ 1lgel®)

Then
ng d, < —Cl|lgk|l?> where the € = ﬁAL’k (1 - %)
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3. Convergence analysis:
We assume that f(X) meets the following conditions in what follows:

i. f(¥) is bounded on the set ‘P:{Xe R": f(x)< f(xo)}.

ii. 9 is Lipschitz continuous, i.e. there exists a constant L >0, That is:
2)-g)|<L|z=ul|, ¥ z,ueR",
Jo) -0 < -] 23
With a constant ¥>0 such that [Vf(X)|<¥ , see [19].

Lemma 1.1 : Assuming that the assumptions are correct, think about any recurrence expression (2)
with search direction (3). The Zoutendijk criterion (16) is satisfied in that case [20] .

Theorem 3.2. : Assume that the direction dk.1 was produced using new algorithms. Then:
liminf|g, =0 (24)

Proof:

Let's assume that the conclusion is false because of contradiction. Then a positive constant y > 0

exists. By contradiction,
such that

g 11> = y? (25)

Again, from (7), we obtain combining this equation and Lemma 1, we have to prove that the direction
dy is bounded, now taking the norm function both sides
Firstly ||dg || = ||go ||, which is bounded
Suppose that
[|dy—_1 llis also bounded for k — 1
(26)

ldi Il = || -6 gi + B, di—1 ||
And distributed the norm in right side

ldy |l < ||64L, g || + ||3A"k di1 ||

< [0 |1l g Il + B4 [Nl die—y |l
As we now the conjugacy parameters are scale parameter and belong the (0,1) and the spectral
parameter practically are in range (0,1) also and in when this parameter take value outside of these
range which reset to value 1. So that

ldill < 11 g Il + lldg—1 |l
Consequence to eq (24-25) that the directions d; are bounded then the convergence is inevitable.

4. Numerical results

This section includes the outcomes of novel techniques on a number of test problems. The codes
are created in Fortran, and double precision calculations are used. Computers are used to conduct
every exam. Our tests are based on a set of 25 nonlinear situations that a transducer is capable of
producing. These problems are discussed in Andrei[21] and are part of the CUTE test. The standard

stop, s.t. |9k < 107, is used in all algorithms. The total number of function evaluations (NOF) and the
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total number of iterations are both taken into account while evaluating the algorithms' performance
(NOI) and (CPU). Tables land 2 contains the results. There are important papers in the field of
optimization as [22]-[25] .

Table 1 : The numerical results of the FR and New method with n=100.
Functions FR Algorithm New Algorithm
NOI NOFG | CPU | NOI | NOFG | CPU

Freudenstein & Roth -

FREUROTH (CUTE) 907 1047 | 2 426 | 495 0
Trigonometric 21 47 0 22 45 0
Extended Rosenbrock

SROSENBR (CUTE) 1715 | 1888 | 4 1035 | 1196 | 3
Extended White & Holst 2001 | 2187 |3 2001|2092 (4
Penalty 28 67 0 28 66 0
Diagonal 1 210 350 1 185 | 339 1
Generalized Tridiagonal 1 44 76 0 41 74 0
Extended Tridiagonal 1 1067 | 1143 | 2 896 | 1015 |2
Extended Three Expo Terms 33 57 0 22 47 0
Diagonal 4 58 116 0 53 106 0
Extended Himmelblau 26 60 0 24 57 0
Extended Maratos 1766 | 2025 | 4 1608 | 1871 | 3
Extended Wood WO0O0DS

(CUTE) 1875 | 2154 |5 1823 | 2098 | 4
Quadratic QF1 191 337 1 194 | 328 0
Extended Tridiagonal 2 81 149 0 65 117 2
TRIDIA (CUTE) 571 766 1 523 | 782 1
ARWHEAD (CUTE) 106 197 0 103 | 196 0
NONDQUAR (CUTE) 2001 | 2251 |4 2001|2033 |0
EG2 (CUTE) 2001 | 2136 |10 2001 | 2121 |8
EDENSCH (CUTE) 44 93 0 46 87 0
ENGVAL1 (CUTE)(64) 50 93 0 39 76 0
DENSCHNA (CUTE) 37 64 0 31 59 1
Extended Block-Diagonal BD2 | 85 151 |2 68 134 |0
ARGLINB (CUTE) 1 3 0 1 3 0
HIMMELBG (CUTE) 1047 | 907 5 426 | 495 1

According to this data, the BK1, BK2 and BK3 approaches have a clear advantage over the FR
technique since they save around (38-42)% in NOF but only (42-59)% in NOI.

NOI NOFG CPU
FR algorithm | 100 % 100 % 100 %
New 88% 83% 71%
algorithm

5. Conclusions

Finally, we presented the spectral conjugate gradient methods with parameters denoted by @4
and B4, as well as a novel modified conjugate gradient formula. Wolfe Line search settings allowed
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us to identify its global convergence. Simulations have demonstrated that the new algorithm may
decrease function evaluations and iterations. While the conventional secant relation only employs
gradient values, the modified conjugate gradient approach uses both gradient and function values.
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