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1. Introduction 
In recent years, There are many problems in 
math physics and engineering such as the 
physics of polymers have been successfully 
analyzed by partial differential equations 
(PDEs)[1].But when these problems interfere 
with  differential equations with non-integer 
order (FDEs), things will be more eye-catching. 
To solve FDEs, new and effective methods must 
be found. Also recently Jafari, Daftardar-Gejjii 
introduced a new iterative method [2]. This 
method solves PDEs for integers and fractional 
order. In this work, we have considered a new 
method called iterative g-transformation 
method (ITTM). Where this technique 
consolidates two methods, the g-

transformation and the iterative method, it is 
worth noting that (ITTM) It is applied easily 
and without assumptions. Reversing the 
method of separating variables that include 
initial conditions and limits. It is possible to 
legitimize the outcomes obtained by the 
proposed method using boundary conditions. 
The outcomes so far are exceptionally 
reassuring and dependable in light of the fact 
that it works effectively. To solve systems of 
partial differential equations with nonlinear 
fractional orders we used lLGM. And we gave 
some examples to verify the work and 
performance of this method. Then, at this point, 
the outcomes are compared with those 
obtained through previous techniques. 

 

2. Important definitions: 
2.1. Definition . The function f(x) , x > 0 it is 
real in the space Cβ, β ∈ R  , if there exists a real 

number   m > β, such that f (x) = xmf1(t) where 
f1 ∈ C[0, ∞]. Clearly Cβ ⊂ Cμ if β ≤ μ  

2.2. Definition . The function f(x),   x > 0  is real 

in the space Cβ
j
  j ∈ N ∪{0} 

 if it is f (j) ∈ Cβ. 

2.3. Definition  [2]. let f be a function such that 
f ∈ C−1

k  ,the left sided fractional integral of 
Riemann–Liouville of order η ≥ 0,  f ∈ Cη is 

defined in the following form: 
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Iηf(y) = {

1

Γ(η)
∫

f(ω)

(y − ω)1−m
dy   , η > 0 ,   y > 0

y

0

f(y)    ,                                               η = 0

                            (1) 

2.4. Definition[3]  let f be a function such that f ∈ C−1
k  , k ∈ N ∪ {0},then we can defined the left sided 

fractional Caputo derivative of f, in the following form,  

Dηf(y) =
∂ηf(y)

∂yη
=

{
 
 

 
 Ik−η [

∂kf(y)

∂yk
] , k − 1 < η < k , k ∈ N

∂kf(y)

∂yk
                                          ,        η = k

                      (2) 

1) Iy
η
f(t, y) =

1

Γ(η)
∫

f(t,y)

(y−s)1−η
 ,            η > 0  , y > 0

y

0
 

2) Dy
η
f(t, y) = Iy

k−η ∂kf(t,y)

∂yk
  ,             k − 1 <  η < k 

2.5. Definition: [5] The Mittag-Leffler function Eη(z) when  η > 0 , we can define it with the following 

string representation , So that this function takes the entire complex level 

Eη(z) =∑
zi

Γ(ηi + 1)

∞

0

 

2.6. Definition: [4] 
Let f(t) be a continuous function and  t ∈ [  0 , ∞ ) we can defined the  general T- transformation 
T(f(t), p, q)   for a piecewise function f(t)   by the  following  integral  

T(f(t, q)) = p(s)∫ e−q(s)t  f(t)dt   
∞

0

, p(s) ≠ 0                                              (3) 

such that the integral is convergent for some q(s), s is positive constant, and 

‖T(f(t))‖ ≤
p(s)M

L − q(s)
    , q(s) ≠ L                           

where ‖. ‖ is anorm on dual of R and it is defined as 

  ‖(f(t))‖ = max|f(t)|        , t ∈ [0,∞) 

 
2.7  Definition : The T-transformation of T[f (t)] of a given Riemann–Liouville partial integral is 
defined in the following form: 

T{Iηf(t)} = (q(s))
−η
F(p, q)                                                    (4) 

 
2.8. Definition :  
let f be a function .The T- transform  T(f (y))  of the Caputo fractional derivative  is defined in the 
following form 

T(Dηf(t) = qηF(p, q) − p(s)∑q(η−r−1)f (r)(0)

n−1

r=0

   ,      n − 1 < η ≤ n                (5) 

3. Use iterative T-transformation to solve a system PDEs. 
In this section we explain the importance of this method for solving a system PDEs with initial 
conditions 

Dy
ηi
ui(t,̅ y) = Vi(u1(t,̅ y), … . . , un(t̅, y)),              ki − 1 < ηi < ki                            (6) 

∂λiui(t, 0)

∂yλi
= hiλi ,         λi = 0,1… . . , ki − 1 , ki  ∈ N                                                       (7) 

We take the T-transform  for both sides of the equation .we get 

T[Dy
ηi
ui(t,̅ y)] = T[Vi(u1(t,̅ y), … . . , un(t,̅ y))]      ,     i = 0,1, … . . , n 

by Definition 8 and the initial conditions (7)  .we get. 
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qαiT[ui(t,̅ y)] − p(s) ∑ qαi−r−1ui
(r)(t,̅ 0)

mi−1

r=0

= T[Viu1(t,̅ y), … , un(t,̅ y)]  i = 1,2, … (8) 

Taking  the T- inverse on both sides of Eq. (8) we get 

ui(t,̅ y) = T
−1 [p(s) ∑ q−r−1ui

(r)(x̅, 0)

mi−1

r=0

] + T−1 [q−αiT[Viu1(t,̅ y), … . , un(t,̅ y)]] 

= fi + Ri(u1(t.̅ y), … , u1(t,̅ y))  ,             i = 1 , 2 , … . , n                                             (9) 

ui(t,̅ y) = fi + Ri(u1(t.̅ y), … , u1(t,̅ y))  ,             i = 1 , 2 , … . , n                              (10) 

Where  fi = T−1[p(s)∑ q−r−1ui
(r)(t,̅ 0)mi−1

r=0 ] ,        i = 1 , 2 , … . , n 

Ri(u1(t,̅ y), … . , un(t,̅ y)) = T
−1 [q−αig[Viu1(t,̅ y), … . , un(t,̅ y)]] 

ui(t,̅ y) =∑uij(t,̅ y)

∞

j=0

    ,            i =  1 ,2 , … , n                                                             (11) 

nonlinear operators Ri can be written in the following from. 

Ri (∑u1j(t, y), … ,∑unj(t,̅ y)

∞

j=0

∞

j=0

)

= Ri(u10(t,̅ y) , . . . , un0(t,̅ y)) +∑{Ri(∑u1k(t, y), … ,∑unk(t̅, y)

j

k=0

j

k=0

)

∞

j=1

− Ri (∑u1k(t, y), … ,∑unk(t,̅ y)

j−1

k=0

j−1

k=0

)                                                        (12) 

 in view of  Eqs. (11) and (12) , Eq. (10) is equivalent to 

∑uij(t)̅

∞

j=0

= fi + Ri(u10(t,̅ y) , . . . , un0(t,̅ y) 

+∑{Ri(∑u1k(t, y), … ,∑unk(t,̅ y)

j

k=0

j

k=0

)

∞

j=1

− Ri (∑u1k(t, y), … ,∑unk(t̅, y)

j−1

k=0

j−1

k=0

)}      (13) 

Then we define the frequency. 

{
 
 
 

 
 
 
ui0(t,̅ y) = T

−1 [p(s) ∑ q−r−1ui
(r)(t,̅ y)

mi−1

k=0

]                                                                              (14)            

ui1(t,̅ y) = T−1[q−ηiT[Ri(u10(t,̅ y), … , un0(t,̅ y)]]                                                                          

ui(m+1)(t̅, y) = T−1[q−ηiT[Ri(u10(t,̅ y) + …+ u1m(t,̅ y), … , un0(t̅, y) + ⋯+ unm(t,̅ y)))]]

−T−1[q−ηiT [Ri(u10(t̅, y) + …+ u1(m−1)(x̅, y), … , un0(t, y) + ⋯+ un(m−1)(t̅, y)))]]

  

Then . 

ui1(t,̅ y) + ⋯+ ui(k+1)(t̅, y) = T
−1[q−ηiT[Ri(u10(t,̅ y) + ⋯+ u1k(t̅, y), … , un0(x̅, y) + ⋯+ unk(t,̅ y)))]] 

 
ui(t,̅ y) ≅ ui1(t,̅ y) + ⋯+ ui,n(t, y)        ,        i = 1,2 , … , n 
We notice that the solutions of the series above converge very quickly. Both al  Jafari and Daftardar-
Gejji  have  brought a classic approach to this type of chain 
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4.   Examples : 
In this part we study the possibility of applying the iterative transform in solving a system of 
differential equations with fractional orders. 
4.1. Example . To solve the system of linear FPDEs [8]: 
Dy
η
u − ωt +ω+ u = 0                                                                                                  

Dy
μ
z − ut +ω + u = 0                           ( 0 <  η, μ ≤ 1)                               (15) 

 And  initial conditions: 
u(t, 0) = sinh(t)        ,     ω(t, 0)ω = cosh (t) 
when μ = η = 1   , then the exact solution is 
u(t, y) = sinh (t − y)     ,           ω(t, y) = cosh (t − y) 
u(t, y) = T−1[p(s)q−1u(t, 0)] + T−1[q−ηT[ωt(t, y) − ω(t, y) − u(t, y)]] 

ω(t, y) = T−1[p(s)q−1ω(t, 0)] + T−1[q−μT[ut(t, y) − ω(t. y) − u(t, y)]] 

With applied algorithm in Eq (14) we get. 

{u0(t, y) = sinh(t)   , ω0(t, y) = coh(t),    

{
 
 

 
 u1(t, y) = −

cosh (t)yη

Γ(η + 1)

ω1(t, y) = −
sinh (t)yμ

Γ(μ + 1)

 

u2(t, y) = −
cosh(t) yη+μ

Γ(η + μ + 1)
+
sinh(t) yη+μ

Γ(η + μ + 1)
+
cosh(t) y2η

Γ(2η + 1)
 

Then we get the solution sequentially. Use  

u(t, y) = u0(t, y) + u1(t, y) + u2(t, y) + ⋯+ sinh(t) (1 +
yη+μ

Γ(η + μ + 1)
+ ⋯) 

−cosh(t) (
yη

Γ(η + 1)
+

yη+μ

Γ(η + μ + 1)
−

y2η

Γ(2η + 1)
+⋯)            (16) 

ω(t, y) = ω0(t, y) + ω1(t, y) + ω2(t, y) + ⋯ = cosh(t) (1 +
yη+μ

Γ(η + μ + 1)
+ ⋯) 

−sinh(t) (
yη

Γ(η + 1)
+

yα+μ

Γ(η + μ + 1)
−

y2η

Γ(2η + 1)
+ ⋯)              (17) 

put η = μ in Eqs. (16) and (17), we reproduce the solution of [7] as follows: 

u(t, y) = sinh(t) (1 +
y2η

Γ(2η + 1)
+ ⋯) − cosh(t) (

yη

Γ(η + 1)
+

y3η

Γ(3η + 1)
+ ⋯) (18) 

ω(t, y) = cosh(t) (1 +
y2η

Γ(2η + 1)
+⋯) − sinh(t) (

yη

Γ(η + 1)
+

y3η

Γ(3η + 1)
+⋯)  (19) 

Now put α = 1 in Eq. (18) and (19), we get. 

u(t, y) = sinh(t) (1 +
y2

2!
+
y4

4!
…) − cosh(t) (y +

y3

3!
+
y5

5!
+ ⋯) = sinh(t − y) 

ω(t, y) = cosh(t) (1 +
y2

2!
+
y4

4!
… ) − sinh (t) (y +

y3

3!
+
y5

5!
+ ⋯) = cosh(t − y) 

 
4.2. To solve the system of nonlinear FPDEs [7]: 
Dz
η
= ωthy −ωyht = −u                                                                         

Dz
μ
v + uthy + uyht = ω                                                                                                     (20)  

Dz
γ
h + utωy + uyωt = h                 ,                  (0 <  η, μ, γ ≤  1),  

And  initial conditions. 
 u(t, y, o) = et+y     ,      ω(t, y, 0) = et−y     ,     h(t, y, 0) = e−t+y.                            (21) 



Volume 18| May 2023                                                                                                                                           ISSN: 2795-7667 

 

Eurasian Journal of Physics, Chemistry and Mathematics                                                               www.geniusjournals.org 
P a g e  | 125 

The exact solution, when  η = μ = γ = 1    , is 
u(t, y, z) = et+y−z    ,      ω(t, y, z) =  et−y+z     ,      h(t, y, z) = e−t+y+z. 
As in Example 1 above, we construct the following: 

u(t, y, z) = T−1[p(s)q−αu(t, y, 0)] + T−1 [q−αT[−u(t, y, z) − ωt(t, y, z)hy(t, y, z) + ωy(t, y, z)ht(t, y, z)]] 

ω(t, y, z) = T−1[p(s)q−αω(t, y, 0)] + T−1 [q−αT[ω(t, y, z) − ut(t, y, z)hy(t, y, z) + uy(t, y, z)ht(t, y, z)]] 

h(t, y, z) = T−1[p(s)q−αh(t, y, 0)] + T−1 [q−αT[h(t, y, z) − ut(t, y, z)ωy(t, y, z) + uy(t, y, z)ωt(t, y, z)]] 

As before the first few terms of u(t, y, z), ω(t, y, z) and h(t, y, z) in this case are: 

{

u0(t, y, z) = et+y

ω0(t, y, z) = et−y

h0(t, y, z) = e
−t+y

 

{
  
 

  
 u1(t, y, z) = −

et+yzη

Γ(η + 1)
−
et−ye−t+yzη

Γ(η + 1)
−
et−ye−t+yzη

Γ(η + 1)
=

et+yzη

Γ(η + 1)

ω1(t, y, z) =
et−yzμ

Γ(μ + 1)
−
et+ye−t+yzμ

Γ(μ + 1)
−
et+ye−t+yzμ

Γ(μ + 1)
=

et−yzμ

Γ(μ + 1)

u1(t, y, z) =
e−t+yzγ

Γ(γ + 1)
−
et+yet−yzγ

Γ(γ + 1)
−
et+yet−yzγ

Γ(γ + 1)
=
e−t+yzγ

Γ(γ + 1)

 

𝑢2(𝑡, 𝑦, 𝑧) =
𝑒𝑡+𝑦𝑧2𝜂

𝛤(2𝜂 + 1)
−
𝑒𝑡−𝑦𝑒−𝑡+𝑦𝑧𝛼+𝛾

𝛤(𝜂 + 𝛾 + 1)
−
𝑒𝑡−𝑦𝑒−𝑡+𝑦𝑧𝜂+𝜇

𝛤(𝜂 + 𝜇 + 1)
 

−
𝛤(𝛾 + 𝜇 + 1)𝑒𝑡−𝑦𝑒−𝑡+𝑦𝑧𝜂+𝜇+𝛾

𝛤(𝜇 + 1)𝛤(𝛾 + 1)𝛤(𝜂 + 𝜇 + 𝛾 + 1)
+
𝑒𝑡−𝑦𝑒−𝑡+𝑦𝑧𝜂+𝛾

𝛤(𝜂 + 𝛾 + 1)
 

                         +
𝑒𝑡−𝑦𝑒−𝑡+𝑦𝑧𝜂+𝛾

𝛤(𝜂 + 𝜇 + 1)
+

𝛤(𝛾 + 𝜇 + 1)𝑒𝑡−𝑦𝑒−𝑡+𝑦𝑧𝜂+𝜇+𝛾

𝛤(𝜇 + 1)𝛤(𝛾 + 1)𝛤(𝜂 + 𝜇 + 𝛾 + 1)
 

                         =
𝑒𝑡+𝑦𝑧2𝜂

𝛤(2𝜂 + 1)
 

𝜔2(𝑡, 𝑦, 𝑧) =
𝑒𝑡−𝑦𝑧2𝜇

𝛤(2𝜂 + 1)
−
𝑒𝑡+𝑦𝑒−𝑡+𝑦𝑧𝛾+𝜇

𝛤(𝛾 + 𝜇 + 1)
−
𝑒𝑡+𝑦𝑒−𝑡+𝑦𝑧𝜂+𝜇

𝛤(𝜂 + 𝜇 + 1)
 

+
𝛤(𝛾 + 𝜂 + 1)𝑒𝑡+𝑦𝑒−𝑡+𝑦𝑧𝜂+𝜇+𝛾

𝛤(𝜇 + 1)𝛤(𝛾 + 1)𝛤(𝜂 + 𝜇 + 𝛾 + 1)
+
𝑒𝑡+𝑦𝑒−𝑡+𝑦𝑧𝛾+𝜇

𝛤(𝛾 + 𝜇 + 1)
 

                            −
𝑒𝑡+𝑦𝑒−𝑡+𝑦𝑧𝜂+𝜇

𝛤(𝜂 + 𝜇 + 1)
+

𝛤(𝛾 + 𝜂 + 1)𝑒𝑡+𝑦𝑒−𝑡+𝑦𝑧𝜂+𝜇+𝛾

𝛤(𝜂 + 1)𝛤(𝛾 + 1)𝛤(𝜂 + 𝜇 + 𝛾 + 1)
 

                         =
𝑒𝑡−𝑦𝑧2𝜇

𝛤(2𝜇 + 1)
 

ℎ2(𝑡, 𝑦, 𝑧) =
𝑒−𝑡+𝑦𝑧2𝛾

𝛤(2𝛾 + 1)
−
𝑒𝑡+𝑦𝑒𝑡−𝑦𝑧𝛾+𝜇

𝛤(𝛾 + 𝜇 + 1)
−
𝑒𝑡+𝑦𝑒𝑡−𝑦𝑧𝜂+𝛾

𝛤(𝜂 + 𝛾 + 1)
 

−
𝛤(𝜂 + 𝜇 + 1)𝑒𝑡+𝑦𝑒𝑡−𝑦𝑧𝜂+𝜇+𝛾

𝛤(𝜂 + 1)𝛤(𝜇 + 1)𝛤(𝜂 + 𝜇 + 𝛾 + 1)
−
𝑒𝑡+𝑦𝑒𝑡−𝑦𝑧𝛾+𝜇

𝛤(𝛾 + 𝜇 + 1)
 

                            +
𝑒𝑡+𝑦𝑒𝑡−𝑦𝑧𝜂+𝛾

𝛤(𝜂 + 𝛾 + 1)
+

𝛤(𝜂 + 𝜇 + 1)𝑒𝑡+𝑦𝑒𝑡−𝑦𝑧𝜂+𝜇+𝛾

𝛤(𝜂 + 1)𝛤(𝜇 + 1)𝛤(𝜂 + 𝜇 + 𝛾 + 1)
 

                         =
𝑒−𝑡+𝑦𝑧2𝛾

𝛤(2𝛾 + 1)
 

Therefore, the series solutions can be written in this form 

𝑢(𝑡, 𝑦, 𝑧) = 𝑒𝑡+𝑦 −
𝑒𝑡+𝑦𝑧𝜂

𝛤(𝜂 + 1)
+

𝑒𝑡+𝑦𝑧2𝜂

𝛤(2𝜂 + 1)
+ ⋯ = 𝑒𝑡+𝑦 (1 +∑

(−𝑧𝜂)𝑖

𝛤(𝑖𝜂 + 1)

∞

𝑖=1

) = 𝑒𝑡+𝑦𝐸𝑡(−𝑧)
𝜂 
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𝜔(𝑡, 𝑦, 𝑧) = 𝑒𝑡−𝑦 −
𝑒𝑡−𝑦𝑧𝜇

𝛤(𝜇 + 1)
+

𝑒𝑡−𝑦𝑧2𝜇

𝛤(2𝜇 + 1)
+ ⋯ = 𝑒𝑡−𝑦 (1 +∑

(−𝑧𝜇)𝑖

𝛤(𝑖𝜇 + 1)

∞

𝑖=1

) = 𝑒𝑡+𝑦𝐸𝜇(−𝑧)
𝜇 

ℎ(𝑡, 𝑦, 𝑧) = 𝑒𝑦−𝑡 −
𝑒𝑦−𝑡𝑧𝛾

𝛤(𝛾 + 1)
+

𝑒𝑦−𝑡𝑧2𝛾

𝛤(2𝛾 + 1)
+ ⋯ = 𝑒−𝑡+𝑦 (1 +∑

(−𝑧𝛾)𝑖

𝛤(𝑖𝛾 + 1)

∞

𝑖=1

) = 𝑒𝑦−𝑡𝐸𝛾(−𝑧)
𝛾 

we put  𝜂 = 𝜇 = 𝛾 = 1 we get. 

𝑢(𝑡, 𝑦) = 𝑒𝑡+𝑦 (1 − 𝑧 +
𝑧2

2!
−
𝑧3

3!
+ ⋯) = 𝑒𝑡+𝑦−𝑧 

𝜔(𝑡, 𝑦) = 𝑒𝑡−𝑦 (1 +
𝑧2

2!
+
𝑧3

3!
+ ⋯) = 𝑒𝑡−𝑦∓𝑧 

ℎ(𝑡, 𝑦) = 𝑒−𝑡+𝑦 (1 +
𝑧2

2!
−
𝑧3

3!
+ ⋯) = 𝑒−𝑡+𝑦−𝑧 

5. Conclusion: 
     In this paper, we dealt with a new method, 
which is the iterative T-transformation method. 
It is considered more general in relation to the 
previous transformations, and we applied it in 
our work to derive accurate and approximate 
analytical solutions for fractional order partial 
differential equations. We have shown that this 
method can reduce the amount of 
computational work compared to the 
traditional methods. Also, this method has a 
clear advantage over the methods of 
decomposition and symmetric analysis in 
solving nonlinear problems. Since lTTM does 
not need to calculate polynomials. Finally, we 
conclude that this method can be considered as 
a good improvement in numerical techniques. 
Two examples are presented with their results, 
for the specific cases. 
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