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Approximation methods play a crucial role in quantum mechanics, enabling the 
study of complex systems that are analytically intractable. This paper provides an 
introduction to two prominent approximation methods in quantum mechanics: the 
Hartree-Fock approximation and atomic approximations. The Hartree-Fock 
approximation is a widely used method for describing the behavior of many-electron 
systems. It approximates the complicated many-body wavefunction by considering a 
single Slater determinant, where each electron occupies an independent orbital. By 
solving the Hartree-Fock equations, the method provides an effective mean-field 
description of the system, neglecting electron-electron correlations. The basic principles, 
mathematical formulation, and limitations of the Hartree-Fock approximation are 
discussed. Atomic approximations focus on modeling atomic systems, which serve as 
fundamental building blocks for more complex molecular structures. These 
approximations aim to simplify the electronic structure of atoms while retaining the 
essential physical characteristics. The most commonly used atomic approximations 
include the Thomas-Fermi model, the Thomas-Fermi-Dirac model, and the density 
functional theory. Each of these approximations provides valuable insights into the 
behavior of atoms and facilitates the calculation of various atomic properties. This paper 
presents a comprehensive overview of the Hartree-Fock approximation and atomic 
approximations, highlighting their significance and utility in quantum mechanics. The 
strengths and weaknesses of each method are discussed, along with their respective 
applications and domains of validity. Additionally, the paper addresses the relationship 
between these approximation methods and more advanced theories, emphasizing the 
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1. Hartree-Fock Approximation 

The wave function )r,....r,r,r( n321 of any system is a mathematical expression which 

describes the system properties as position, momentum, energy, etc. The wave function for the multi–
particle is defined as [1]: 

                                                                                                                                  …………. (1-1) 
 
The radial part )r(

n
R


 is related to the distance of the electron from the nucleus. It depends on the ( n) 

"principal quantum number" and ( )"angular momentum quantum number". In contrast, the angular 

part (spherical harmonic) ),(
m

Y 



 supplies an angle dependence and depends on the   and 


m  

(magnetic quantum number). The quantum numbers n,  , 


m  and ms take the values will be 

mentioned later. The analytical solutions to the Schrödinger equation for the non-relativistic Hydrogen 
atom are well known but cannot be obtained exact analytical solutions for a system of many electrons. 
The electron-electron term in the Schrodinger equation makes the solution inseparable in single-
particle coordinates, except in only approximate methods. The Hartree-Fock Self-Consistent Field 
approximation (HF SCF) provides an excellent starting point for dealing with a many-electron system 
[2]. 
1.1.  Hartree Approximation:- 
In 1928, and 2 years after from propagated the Schrödinger equation, Hartree suggested a mode to 
resolve Schrödinger equation for multiple-electron systems based on physical standards [3]. Hartree 
approximation assumed that "every electron moves with average potential result from other electrons", 
so the wave function equal to multiplication wave function for single electron for system have N-
electron [4]: 

(N)    (3).......   (2)   (1)  ..N)Ψ(1,2,3... 321 N=           …………. (1-2) 

)(N(i)...... Ni =  

Where (i)i   represents the function for the coordinates the site of the electron i ,  N electron number 

in the atom . This approximation is neglecting of the correlation [5]. Hartree gives an excellent 
approximation to calculate the Helium atom. He does not obey the Pauli Exclusion Principle when the 
electrons interchange their position, giving another error in calculating the energy because the waves 
function to the electrons is antisymmetric [6]. In addition, it also failed to consider the in 
distinguishability of the electrons. Later, Hartree and Fock used a new approximation of the wave 
function in which the Pauli Exclusion Principle was satisfied. 
The electron correlation is a generic term which depicts interactions electrons with each other’s, each 
electron stays away from others electrons, therefore; any electron moves in multi-electrons atoms. The 
electrons are inside that system will alteration position to keep stability system .There are two kinds of 
electron correlation: Fermi and Coulomb holes [7]. 
 

need for accurate approximations to tackle the challenges posed by complex quantum 
systems. 

Overall, this introduction serves as a foundation for further exploration and 
understanding of approximation methods in quantum mechanics, laying the groundwork 
for future research and applications in various areas of physics, chemistry, and materials 
science 

Keywords: crucial role, quantum mechanics, Hartree-Fock and many-body and 
many-electron. 
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1.2. Slater Determinant and Hartree-Fock Approximation 
In 1926, Heisenberg and Dirac autonomously suggested that the wave function of electronic motions 

must be anti-symmetric (the indication of the wave function becomes inverse for the reciprocation of 
electrons) to apply the Pauli exclusion principle naturally, so should be represented as a determinant. 
The new electron–electron interaction resulting from the antisymmetrization is called the exchange 
interaction. Slater developed a general method for solving the Schrödinger equation based on the 
standardized which determinant represented the anti-symmetric wave function [8, 9, 10]. The Hartree 
–Fock (HF) approximation were first supposed by Fock in 1930 since then ,the HF method has taken a 
central role in studying the atomic and molecular electronic properties[11]. The Hartree –Fock (HF) 
method enables accounts not only of the ground state but also excited states of atoms and ions. Fock 
and Slater corrected the defects of the Hartree SCF method, they pointed out that it is necessary that 
the spin-orbital interaction must be taken into account and to take antisymmetric linear combinations 
of the products of spin-orbitals. The Hartree-Fock (HF) wave functions are independent particle-model 
approximations to non-relativistic Schrödinger equation, so the monocular determinant can be written 
as the anti-symmetrized product of all occupied Hartree-Fock spin-orbital for atoms [11, 12]. 

…………. (1-3) 
 
Where A is the anti-symmetrized operator given by [47]: 

                                                                    …………. (1-4) 
 
 
          takes the values  1 for even and odd permutation, P is any permutation of the electron, and the 

factor 
!N

1
 introduced to ensure that the wave function is normalized. For our purpose, the wave 

function is written [13]                
    …………. (1-5) 
 

where the pair function mn

ijA  can be defined as [30]: 

…………. (1-6)   
 
 
And ijΠ  Explain the product of all occupied Hartree-Fock spin orbital except (m)

i
  and (n)

j
 , while 

i and j represent spin orbital labels, also m and n refer to electron labels. 
The product )N...123(  in equation (1-3) can be defined as: 

 
…………. (1-7) 
 
 

The Hartree-Fock spin-orbital  are specified by the numbers 1,2,3…N  begin with the bottom  

orbital with spin, therefore; all odd integers for α spin and all even ones for β spin. Equation (1-3) 

can be expressed in terms of Slater determinant as follows [12]: 
 
  …………. (1-8) 
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The HF or analytic self-consistent field atomic wave function provides the un-correlated description 
of each atom. For any atom or ion, the Hartree-fock spatial orbital may be written as : 

…………. (1-9) 

Where ic  represents the constant coefficient yield from the SCF method. And i  is the basis 

function as a standard normalized Slater-type orbital (STO’s), which is given by : 
…………. (1-10) 
 

where )r(Rn  is the wave function called the radial part of and it given as: 

…………. (1-11) 
 

mnN  is the normalization constant given by[13]: 

 
           …………. (1-12)    
 

                                                                                    

 
 
and                                                                                               …………. (1-13) 
  
 
 

Where (r)Sn  is called Slater-type orbital  (STO’s),  represents the orbital exponent and ),(
m

Y 




represents the angular part of the wave function. 
1.3. Pauli Principle and Quantum numbers:- 
The Pauli Exclusion Principle is a quantum mechanical guideline formulated by Wolfgang Pauli in 1925, 
it's expresses that no two indistinguishable fermions may possess a similar quantum state at the same 
time. A more thorough articulation of this rule is that, for two indistinguishable fermions, the aggregate 
wave function is against symmetric. For electrons in a monocular atom, it expresses that no two 
electrons they have a similar four quantum numbers. In relativistic quantum field theory, the Pauli rule 
takes after from applying rotation operator in fictive time for particles of half-integer spin. [12,13]. 
The particles which have odd half-integer spins (1/2, 3/2 ,….), also have wave functions that are 
antisymmetric to an exchange of any two of them. Like protons and neutrons and electrons and applies 
the exclusion principle when they are in the same system, it's called Fermions particles, Fermi and Dirac 
discovered statistical distribution law which govern fermions. Whereas the particles which have spins 
are zero or an integer, also has wave functions that are symmetric to an exchange of any two of them, 
such as photons, alpha particles, and helium atoms, and do not applies the exclusion principle it's called 
bosons particles, Bose and Einstein discovered a statistical distribution law which govern bosons. 
The quantum numbers represents (n) principle quantum number, this number takes integer values 
n=1, 2, 3…etc, it locates the main energy level of the atom. The principle quantum number denotes 
greater distances between the electrons and nucleus,  the shells having  values of  n =1, 2, 3…etc, are 
called  K, L,M,… shells,  respectively.  l orbital or azimuthal quantum number, it takes integral  values 
including  zero but less than the value of the corresponding  n. The allowed l values are 0,1,2,3….( n-1). 
It decides the shapes of the subshells (circular orbits, elliptical orbits). These subshells are identified as 
s, p ,d,…corresponding to l =0,1,2,…respectively. (𝑚𝑙)  magnetic quantum number ,has integral value 
between 𝑙 and −𝑙  including zero,  the value of ml  is related to the orientation of  the orbital in a space 
relative to the other orbitals in the atom. ( ms) spin quantum number,   the electron spin taking values 
as +1/2 (upward)  or -1/2 (downwards) . 
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1.4. Hund’s Rule:-  
The German physicist Friedrich Hund formulated first rule General, Hund saw that greatest stability 

comes if the atomic orbitals are half-filled with electrons before any of them are filled. This 
generalization, called Hund’s rule, is sometimes stated in an alternative form, of the states 
associated with the ground state configuration of an atom or ion, those with greatest spin 
multiplicity lie most profound in energy [11,12]. 

2. The Atomic Properties 
In this chapter, we studied some atomic properties such as the two–particle density  (xm,xn), two-

particle radial density distribution function D(r1,r2),    one-particle radial density distribution 
function D(r1), inter-particle distribution function 𝑓(𝑟12),one-particle expectation value 〈𝑟1

𝑛〉, 
inter-particle expectation value 〈𝑟12

𝑛 〉,  expectation value of the  potential energy 〈𝑉〉 , expectation 
value of  kinetic energy 〈𝑇〉,. 

2.1. Two-Particle Density  (𝒙𝒎, 𝒙𝒏) 

The function (1,2) represents the probability of finding two electrons simultaneously at 

position 1 and 2. For any N-electron atomic system, the two-particle density )x,x(
nmHF

 can be 

written as [14,15,16]𝛤𝐻𝐹(𝑥𝑚, 𝑥𝑛)= (
𝑁
2

) ∫ 𝜓(𝑥1, 𝑥2, 𝑥𝑝, … , 𝑥𝑞)𝜓∗(𝑥1, 𝑥2, 𝑥𝑝, … , 𝑥𝑞) 𝑑𝑥𝑝 … 𝑑𝑥𝑞  

Where nx  represents the combined space and spin coordinates of electron n, and qp
dx...dx

 indicates  
 
 

integration summation over all N-electrons except m and n. The factor 









2

N

 ensures that the second 
order density matrix is normalized to the number of electron pairs within the system: 

∫𝛤𝐻𝐹(𝑥𝑚, 𝑥𝑛)𝑑𝑥𝑚𝑑𝑥𝑛 =(
𝑁
2

)                             …(2-2) 

and (
𝑁
2

) can be written as:  

(
𝑁
2

) =  [
𝑁!

2!(𝑁−2)!
]                                                                            …….. …(2-3) 

Where: 
ΓHF(𝑥𝑚, 𝑥𝑛) = ∑ Γij(𝑥𝑚, 𝑥𝑛)𝑁

𝑖=1<𝑗                                                          ….....(2-4)   

Then for each ij can be expressed as[17]: 

Γij(𝑥𝑚, 𝑥𝑛) =
1

2
∑ 𝐴𝑖𝑗

𝑚𝑛𝑁
𝑖<𝑗 (𝐴𝑖𝑗

𝑚𝑛)∗ 

Where : 
𝐴𝑖𝑗

𝑚𝑛 = 𝜙𝑖(𝑚)𝜙𝑗(𝑛) − 𝜙𝑗(𝑚)𝜙𝑖(𝑛) 

2.2. Two-particle radial density distribution function D(r1,r2) 
The two-particle radial density distribution function D(r1,r2), is the measure of probability of finding 
two-electrons simultaneously and their radial coordinates are in the range r1to r1+dr1,and  r2 to r2+dr2,  
or is the probability density of finding an electron at a radius r1 and another electron at r2simultaneously 
,in each individual electronic shell is defined by :[ 18] 

𝐷(𝑟1, 𝑟2) = (
𝑁
2

) 𝑟1
2𝑟2

2 ∫|𝜓(𝑥1, … , 𝑥𝑁)|2𝑑𝑥3, . , 𝑑𝑥𝑁𝑑Ω1𝑑Ω2    … (2-7)  

 
Where(ri ,Ω𝑖)is the polar coordinate of the vector r, it can be written   𝐷(𝑟1, 𝑟2) 𝑎𝑠 
Where(ri ,Ω𝑖)is the polar coordinate of the vector r, it can be written   𝐷(𝑟1, 𝑟2) 𝑎𝑠 

𝐷(𝑟1, 𝑟2) = ∫∫ (r1,r2)𝑟1
2𝑟2

2𝑑Ω1𝑑Ω2             …(2-8) 
Where 𝑑Ω𝑖 denotes that the integration is over all angular coordinates of the position vector and it is 
simply defined as                         

… (2-1) 

…………(2-5) 

……………….(2-6) 
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∫ 𝑑Ω𝑖 = ∫ ∫ 𝑠𝑖𝑛 𝜃𝑖𝑑𝜃𝑖
2𝜋

0

𝜋

0
𝑑∅𝑖 …(2-9) 

Where i =1 or 2 and the normalization condition for two-particle radial density distribution 
function 𝐷(𝑟1, 𝑟2) can define as: 

∫ ∫ 𝐷(𝑟1, 𝑟2)𝑑𝑟1𝑑𝑟2 = 1                            …(2-10)                       
The function  𝐷(𝑟1, 𝑟2) Tells us how the motion of the two-different electrons is correlated as a result of 
their interaction and equation (2-10) is a measure of the probability of finding two electrons 
simultaneously with radial coordinates enclosed between 𝑟1 to 𝑟1+𝑑𝑟1 and 𝑟2  to 𝑟2+𝑑𝑟2respectively.                                          

 𝐷(𝑟1, 𝑟2) = 𝑅1𝑆
2 (1)𝑅1𝑠

2 (2)𝑟1
2𝑟2

2…(2-11) 
2.3. One-particle radial density distribution function D(r1) 

The One Particle Radial Density Distribution D(r1) is essential for studying the electrons in an 
atom, the probability density function of finding an electron at a distance r from the coordinate origin, 
i.e., the nucleus, which means the probability of finding electrons in each shell is obtained from 
integration over two–electron radial density function    D(r1, r2)  and defined as 

𝐷(𝑟1) = ∫ 𝐷(𝑟1, 𝑟2)𝑑𝑟2
∞

0
                         …(2-12) 

One-particle expectation value 〈𝒓𝟏
𝒎〉 

The one-electron expectation value 〈r1
m〉is determined by the expression as: 

〈𝑟1
𝑚〉 = ∫ 𝐷(𝑟1)𝑟1

𝑚∞

0
𝑑𝑟1                         …(2-13) 

where ( −2 ≤ 𝑚 ≤ 2)  in this  research  
In the case Where 𝑚 = 0 the expectation valule 〈𝑟1

𝑚〉 must be equal  to one, this means :         

〈𝑟1
𝑚〉 = ∫ 𝐷(𝑟1)𝑟1

0∞

0
𝑑𝑟1=∫ 𝐷(𝑟1)

∞

0
𝑑𝑟1 = 1          …(2-14) 

In the case ( m= -1)the expectation value for one-electron 〈
1

𝑟1
〉 leads to the electron-nuclear potential 

energy and Nuclear magnetic Shielding constant, (m = 1) required to the position ; m = +2 the one-
particle expectation value 〈𝑟1

2〉  can be used in calculation of the evaluate the diamagnetic susceptibility  
The radial expectation value for one electron 〈𝑟1

𝑚〉  for K-shell could be found by substituting equation 
(2-12) in equation(2-13) as,  

〈𝑟1
𝑚〉𝐾 = ∫ 𝑅1𝑆

2 (𝑟1)𝑟1
2𝑟1

𝑚∞

0
𝑑𝑟1    …(2-15) 

2.4. Standard deviation  ∆𝒓𝟏 

The standard deviation ∆𝒓𝟏is a square root of the variance; which it is especially useful for representing 
the diffuseness of each radial density distribution, because it has the unit of  r and it is defined by  

∆𝑟1 = [〈𝑟1
2〉 − 〈𝑟1〉2]1 2⁄                        …(2-16)   

2.5. inter-particle distribution function f(r12) 
 Cousin and Neilson proposed a distribution function for inter-electronic separation of f(r12) of s-states 
associated with spin - orbital pair (i,j) 

𝑓𝑖𝑗(𝑟12)𝑑𝑟12 = ∫ 𝛤𝑖𝑗(𝑟1, 𝑟2)𝑑𝑟1𝑑𝑟2                    …(2-17) 

Where the function 𝑓𝑖𝑗(𝑟12) is the probability distribution distance between electron l and electron 2 ; 

this function also can use to fined –two-particle expectation value as The normalize condition  for the 
inter-particle distribution function is defined as[17] 

∫ 𝑓(𝑟12)
∞

0
𝑑𝑟12 = 1                              …(2-18)                        

2.6. Interparticle expectation value 〈𝒓𝟏𝟐
𝒎 〉 

 The inter-particle (interelectronic separation) expectation values 〈𝑟12
𝑚〉can be determined from the 

formula            

〈𝑟12
𝑚〉 = ∫ 𝑓(𝑟12)𝑟12

𝑚 𝑑𝑟12
∞

0
                           …(2-19) 

where  r12  represents the distance between two-electrons when 𝑚 = −1, that 〈
1

𝑟12
〉represents the 

repulsion energy between two-electrons 𝑉𝑒𝑒 

where;                          
〈𝐸〉 = 〈𝑇〉 + 〈𝑉𝑒𝑛〉 + 〈𝑉𝑒𝑒〉             …(2-20) 
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  Γ(𝑟1, 𝑟2) 

 

f(r12) 

 

D(r1,r2) 

〈𝐸〉 

 

D(r1) 

〈𝑉〉 
〈𝑟12

−1〉 〈𝑟1
−1〉 

〈𝑇〉 

Where  〈𝑇〉 is the expectation value of kinetic energy ,〈𝑉𝑒𝑒〉  is the Coulomb repulsion between electron-
electron, and 〈𝑉𝑒𝑛〉 is an attraction energy between electron-nucleus, we can write  

〈𝑇〉 = −1
2⁄ ∫ 𝜓∗[∑ ∇𝑖

2𝑁
𝑖=1 ] 𝜓𝑑𝜏 …(2-21) 

〈𝑉𝑒𝑛〉 = − ∫ 𝜓∗ [∑𝑁
 𝑖=1  

𝑍

𝑟𝑖
] 𝜓𝑑𝜏   …(2-22) 

〈𝑉𝑒𝑒〉 =  ∫ 𝜓∗ [∑
1

𝑟𝑖𝑗

𝑁
𝑗>𝑖 ] 𝜓𝑑𝜏 ..(2-23) 

The total expectation value of potential energy is  
〈𝑉〉 = 〈𝑉𝑒𝑛〉 + 〈𝑉𝑒𝑒〉  ….(2-24) 

Hartree-Fock method satisfied the virial theorem . The viral theorem is a necessary condition for the 
stationary state, the condition of the viral theorem is: 

〈𝐸〉 = 〈𝑇〉 + 〈𝑉〉  …(2-25) 

〈𝐸〉 = −〈𝑇〉 =
〈𝑉〉

2⁄      …(2-26) 

Expectation value of potential energy proportional to the expectation values of  〈𝑟1
−1〉 and 〈𝑟12

−1〉 , 
respectively. Where  

〈𝑉𝑒𝑛〉 = −𝑍. 〈𝑟1
−1〉 …(2-27) 

and  
〈𝑉𝑒𝑒〉 = 〈𝑟12

−1〉 …(2-28) 

So , we can write potential energy according to equation (2-24) as 
〈𝑉〉 = −𝑍〈𝑟1

−1〉 + 〈𝑟12
−1〉 …(2-29) 

  Where  the expectation values in equation (2-29) are related to the electron density distribution 
function 𝐷(𝑟1) and the distribution function of the interelectronic distance 𝑓(𝑟12) , respectively. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig(1).Scheme illustrates the use of the particle density Γ(𝑟1, 𝑟2) in the calculation of some atomic 
properties in the position space 
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