
Volume 20| July 2023 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 53

1. Introductıon
Over the past few decades, software
technologies have become an indispensable
part of modern human society, driving constant
innovation and advancement in the software
industry [1, 2]. Global competitiveness and the
need for efficient software solutions have
prompted developers and enterprises to
explore software reuse paradigms, such as

Free-Open-Source Software (FOSS)
components and function-reuse concepts, to
reduce development cycle delays and costs [2,
3]. While software reuse offers cost-efficiency,
it also introduces challenges such as aging,
code smells, and faults due to excessive
reliance on reused components [4-9]. These
factors can lead to software malfunctions and
impact overall reliability [2, 9].

A New Method for Software Defect
Prediction Based on Optimized
Machine Learning Techniques

SHAHO HASSEN 1, 1 Graduate School of Natural and Applied Sciences, Department of
Computer Engineering, Atilim University, Ankara, Turkey.

shaho.hassen@su.edu.krd
Prof. Dr. Ali YAZICI 2, 2 Department of Computer Engineering, Atilim University, Ankara,

Turkey. ali.yazici@atilim.edu.tr
Prof. Dr. Alok MISHRA 3

3 Department of Computer Engineering, Atilim University, Ankara,
Turkey. profalokmishra@gmail.com

A
B

ST
R

A
C

T

Objective: This thesis aimed to develop a robust neuro-computing model for software
defect prediction, utilizing the Levenberg Marquardt Neural Network (LM-ANN) with a
novel improved genetic algorithm as a heuristic model. The goal was to achieve higher
accuracy and overcome local minima and convergence issues.
Theoretical framework: The LM-ANN was chosen for its adaptive learning capabilities
in non-linear feature learning from defect data, but it faced challenges due to high
weight estimation for 17 input features.
Method: To address local minima and convergence problems, an improved genetic
algorithm heuristic model was developed to assist the LM-ANN in adaptive weight
estimation and updates during learning.
Results and conclusion: The integration of the heuristic model with LM-ANN led to
superior accuracy compared to classical neural networks on software fault datasets,
making it a promising approach for defect prediction.
Implications of the research: The research presents a robust neuro-computing
solution with improved adaptability, providing practical benefits for software defect
prediction and addressing challenges in the field.
Originality/value: This work introduces a novel heuristic-driven neuro-computing
model, combining the strengths of LM-ANN and the genetic algorithm. The focus on
feature engineering further enhances its effectiveness in addressing class imbalance,
overfitting, and convergence problems. The research contributes to advancing defect
prediction methods in software engineering.

Keywords: Neuro-Computing, LM-ANN, Defect Prediction, Genetic Algorithm,
ANN, Local Minima, HNC-SDP, and Levenberg Marquardt.

mailto:shaho.hassen@su.edu.krd
mailto:ali.yazici@atilim.edu.tr
mailto:profalokmishra@gmail.com

Volume 20| July 2023 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 54

In critical domains like finance, healthcare,
defense, and industrial control, software
reliability is paramount, and any compromise
in this aspect could have severe consequences
[9, 10]. Thus, achieving software reliability
without compromising cost-effectiveness has
become a pressing concern. Software defect
detection and prediction have emerged as
essential practices to address this demand [9].
However, the complexity of software designs
and diverse development paradigms make
manual fault detection in large and complex
software systems infeasible. Manual testing not
only consumes substantial resources and time
but also carries the risk of human errors and
misjudgments [6].
To tackle these challenges and optimize defect
prediction, automated reusability prediction
approaches have been proposed, utilizing
software metrics and machine learning
methods [11-13]. While some efforts have been
made to predict defects in individual software
classes or functions using software metrics, the
optimality of the employed machine learning
classifiers has remained questionable.
Challenges like local minima, convergence
limitations, and the optimal selection of
software metrics for defect prediction hinder
the development of computationally efficient
solutions.
In the existing body of research, numerous
software defect prediction (SDP) systems
driven by machine learning tend to emphasize
code complexity metrics like Lines of Code
(LOC) and Depth of Inheritance Tree (DIT).
However, they often neglect the inherent
relationships between classes or components,
such as cohesion and coupling. Overlooking
these critical aspects can result in less accurate
predictions since excessive reuse of different
classes can also contribute to software faults
[8, 9, 11, 12].
Furthermore, an unexplored issue in previous
research is the challenge of class imbalance in
defect prediction. The probability of a faulty
class or defect occurrence is typically lower
than that of normal classes, leading classical
machine learning methods to exhibit false
positives (favoring the majority class) under

imbalanced data conditions, especially during
local minima and premature convergence.
This research paper introduces a novel and
robust machine learning model for software
defect prediction, aiming to overcome the
limitations and challenges of existing
approaches. To achieve this, the model utilizes
Object-Oriented Programming (OOP) metrics,
particularly CKJM (Chidamber and Kemerer
Java Metrics), to facilitate two-class
classification. The proposed method involves
data resampling through Synthetic Minority
Over Sampling (SMOTE), followed by Min-Max
normalization and heuristic-driven neuro-
computing techniques. This comprehensive
approach aims to improve the accuracy of
defect prediction in software systems.
In this article, we present a detailed description
of our proposed software defect prediction
model, along with its performance evaluation
using various NASA PROMISE datasets. The
results demonstrate the model's superiority in
terms of accuracy, precision, recall, and F-
score, making it a promising solution for
reliable and cost-effective software defect
prediction. The subsequent sections delve into
the architecture, methodology, and
experimental findings of our heuristic-driven
neuro-computing model for software defect
prediction.
2. Literature Survey
Software defect prediction is a critical aspect of
ensuring software reliability and quality. Over
the years, researchers have explored various
machine learning approaches for effective
defect prediction. This literature survey
provides an in-depth analysis of significant
research papers in this domain, focusing on
data mining-based methods, regression-based
methods, neuro-computing-based approaches,
genetic algorithms, decision tree-based
techniques, association rule mining, and
Bayesian neural networks.
Liu et al. [14] proposed a generic multi-data
training and validation model for fault
classification, utilizing historical software
metrics to improve defect prediction. Song et
al. [15] employed association rule mining to
enhance defect prediction accuracy in over 200
projects compared to conventional techniques.

Volume 20| July 2023 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 55

Lessmann et al. [16] conducted an evaluation of
22 classifiers using NASA Metric datasets to
determine their performance.
Munson et al. [17] explored the efficiency of
discriminating analysis using PCA to minimize
complexity metrics for defect prediction. Tom
[18] utilized the Naïve Bayesian algorithm for
fault classification, achieving better results
based on conditional independence hypothesis.
Ohlsson et al. [19] employed a genetic
algorithm for fault detection in
telecommunication software modules.
Riquelme et al. [20] used a genetic algorithm to
predict defects, while Catal et al. [21] proposed
an SDP system based on Artificial Immune
System.
Drown et al. [32] employed evolutionary
sampling for enhanced software quality
assurance and reliability. Chen et al. [22]
designed a defect prediction system using data
mining techniques, specifically employing
Bayesian Network models. Wang et al. [23]
investigated defect prediction by employing
the C4.5 mining algorithm and leveraging
Spearman's rank correlation coefficient in their
study.
Qinbao et al. [15] used association rule mining
for defect prediction and correction with
higher accuracy. Biwen et al. [24] proposed a
C4.5 decision tree algorithm-based system with
k-medoids clustering for improved fault
prediction. Marwala [25] utilized Bayesian
neural networks for fault detection in
structures.
Various studies emphasized the significance of
CK-Metrics, object-oriented metrics, and UML
diagrams for defect prediction [26-32]. These
metrics provide valuable insights into software
features and help in identifying defects
effectively.
In conclusion, This literature survey provides
an overview of significant research in the field
of software defect prediction. Various machine
learning methods, such as decision trees,
regression, and neuro-computing, were
thoroughly examined for their effectiveness in
defect prediction. Among these approaches,
neuro-computing demonstrated higher
efficacy; however, none of the existing methods
adequately addressed issues related to class-

imbalance, convergence, and local minima in
classical machine learning.
The survey also highlighted the potential
benefits of employing evolutionary computing
algorithms like genetic algorithms and AIS to
enhance data in defect prediction.
Interestingly, while these algorithms have not
yet been applied to boost the performance of
machine learning methods for defect
prediction, they hold promise for future
improvements.
Based on these findings, the dissertation
proposes a novel heuristic-driven neuro-
computing approach for software defect
prediction, utilizing OOP-CK metrics as
benchmark datasets.

3. Material And Methods
In this article, we present an innovative
approach known as the uristic-driven
neurocomputing model for software defect
prediction. The model is designed to effectively
predict software defects by incorporating
various stages, including data preparation,
resampling techniques, and min-max
normalization. By combining these essential
steps, we create a robust framework that
leverages the power of neurocomputing to
enhance software defect prediction accuracy.
Throughout this article, we will delve into the
details of each stage, illustrating how they
contribute to the overall effectiveness of our
proposed model in software defect prediction.
3.1 Heuristic Driven Neuro-Computing

Model for Software Defect Prediction
we present a comprehensive exploration of the
processes involved in software defect
prediction (SDP) tasks. We will delve into key
procedures, such as data acquisition and
processing, feature selection, resampling, and
normalization. These fundamental steps set the
foundation for our proposed heuristic-driven
neuro-computing (HNC) algorithm, which we
will thoroughly discuss and demonstrate its
significance in the context of software defect
prediction. Through this article, readers will
gain valuable insights into the intricacies of
SDP and the novel approach we have
developed to enhance its accuracy and
effectiveness.

Volume 20| July 2023 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 56

3.1.1 Data Acquisition and Pre-processing
In our study, we evaluated the performance of
our software defect prediction model by using
standard benchmark datasets sourced from the
NASA PROMISE archive. These datasets,
including Ant1.7, Camel1.6, IVY, and JEdit, were
collected from different software components
using advanced mining techniques like
Chidamber and Kamerer Java Virtual Machine
(CKJM). The CKJM tool allowed us to extract 22
software metrics from the software, which
were based on Object-Oriented Programming
(OOP) principles.
However, we recognized that not all software
metrics have equal importance in software
defect prediction. To tackle this concern, we
employed various feature engineering
techniques. These techniques included
univariate logistic regression-driven feature
selection, resampling, and min-max
normalization. By using these methods, we
optimized the feature set and prepared the
data for our analysis. In the following sections,
we will provide a detailed explanation of these
feature engineering processes and their
contributions to the overall effectiveness of our
software defect prediction model.
3.1.2 Univariate Logistic Regression based

Feature Selection
In essence, the Univariate Logistic Regression
(ULR) method is a statistical analysis technique
that involves both dependent and independent
variables. In our case, the dependent variable is
the per-class software reusability, and the
independent variables are the software
metrics. As we are dealing with a two-class
problem (Normal or Defect/Fault), the
dependent variable takes on two labels: 1 for
Normal and 0 for Defect/Fault. This allows us
to evaluate the significance of each OOP CK
metric in predicting software reusability.
Mathematically, we utilize equation (1) to
estimate the logistic regression value.

𝜋(𝑥) =
𝑒𝛼0+𝛼1𝑋

1 + 𝑒𝛼0+𝛼1𝑋

(1)

In equation (1), the dependent variable is
represented as logit[π(x)], and the independent
variable is denoted by X. The parameter π
denotes the likelihood factor, which signifies
the importance of each metric in the analysis.

We estimate the value of π(x) using equation
(2).

𝑙𝑜𝑔𝑖𝑡[𝜋(𝑥)]
= 𝛼0 + 𝛼1𝑋

 (2)

Let's consider a dataset X with N rows and M+1
columns. In this context, M represents the
number of independent variables for each row
(in this case, 17 software metrics), and the
additional column is reserved for the
dependent variable. Now, let β be a column
vector of length K+1, where K represents the
number of parameters associated with the M
columns of the independent variable. Each
parameter in the vector β corresponds to one
of the M columns of the independent variable.
When we utilize the logistic regression
function, also known as the Logit function, we
calculate the log-odds of the likelihood of
success in relation to the linear component.
Mathematically, this can be expressed as
follows:

𝐿𝑜𝑔𝑖𝑡 (
𝜃𝑖

1 − 𝜃𝑖
)

= ∑ 𝑥𝑖𝑚𝛽𝑚 𝑖

𝑀

𝑚=0

= 1,2, … ,𝑁

(3)

In equation (3), the term (θ_i / (1-θ_i))
represents a factor commonly known as the
odds of an event. Now, let's consider the
variable y, takes a value of 1 for the Normal or
Defect/Fault class. This variable follows a
Bernoulli distribution with a probability
parameter denoted as p. For each instance, we
calculate the probability parameter (p-value),
and the model selects instances where p≥0. 05..
Despite the CKJM model extracting a total of 22
distinct features, the Univariate Logistic
Regression (ULR) feature selection method
identified six specific OOP metrics that hold
significant importance in software defect
prediction. These metrics are as follows:

1. WMC - Weighted Methods per Class
2. DIT - Depth of Inheritance Tree
3. NOC - Number of Children
4. CBO - Coupling between Object Classes
5. RFC - Response for a Class
6. LCOM - Lack of Cohesion in Methods

Volume 20| July 2023 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 57

Additionally, the following metrics were
considered for further computing, making a
total of 17 different characteristics:

1. Ca - Afferent Couplings
2. Ce - Efferent Couplings
3. NPM - Number of Public Methods
4. DAM - Data Access Metric
5. MOA - Measure of Aggregation
6. MFA - Measure of Functional

Abstraction
7. CAM - Cohesion Among Methods of

Class
8. CC - Cyclomatic Complexity
9. LOC - Lines of Code
10. IC - Inheritance Coupling
11. CBM - Coupling Between Methods
12. AMC - Average Method Complexity

These selected features form the basis for
further computations and analysis in the
software defect prediction model.

3.1.3 Feature Re-sampling:
This study acknowledged the problem of class-
imbalance in the IVY, JEdit, Camel, and Ant
datasets, where the number of defect classes is
considerably smaller compared to the normal
classes. To tackle this issue, the researchers
used a resampling technique on the input data.
Specifically, they employed the synthetic
minority oversampling method to increase the
number of minority samples, ensuring the
training process's effectiveness. This approach
aimed to mitigate the skewed performance and
high false-positive outputs that can arise due to
class-imbalance in machine learning models.
By addressing this concern, the study sought to
enhance the overall performance and reliability
of their software defect prediction model.
To handle class-imbalance, the study used a
confidence level of 95% for both up-sampling
and down-sampling techniques. Simple over-
sampling or under-sampling, or random
resampling, was deemed inadequate in fully
resolving class-imbalance issues as it could
introduce bias in favor of the majority class.
This bias may cause new samples to be
predicted as the majority class, resulting in
false predictions and reduced model accuracy.
Therefore, the researchers opted for a more
robust approach to ensure the effectiveness

and reliability of their software defect
prediction model.
To address the aforementioned limitations, the
proposed model implemented the synthetic
minority oversampling technique. This
involved generating synthetic positive samples
using the K-nearest neighbor (k-NN) algorithm,
with a specific choice of 5-Nearest
Neighborhood for the minority "Defect or
Fault" class. The next step was to balance the
dataset by equalizing the number of samples,
ensuring that the majority class had the same
number of samples as the minority class. This
approach aimed to create a more balanced
dataset, leading to improved machine learning
performance and higher prediction accuracy in
software defect prediction.

3.1.4 Min-Max Normalization
It is well-known that data imbalance and
convergence are significant challenges in
classification or prediction systems,
particularly in models with large sets of
features. After performing feature extraction
and selection, the retrieved data may vary in
size and range, leading to computational issues
such as premature convergence and overfitting
of the learning model. This can negatively
impact the overall computational efficiency,
accuracy, and reliability of the system.
To tackle this issue, the proposed model
employs Min-Max normalization on the input
data. The Min-Max normalization algorithm,
denoted by equation (3.4), scales the feature
values to lie within the range of 0 to 1. Through
linear conversion and mapping of each data
element xi' from the selected features X, the
proposed model ensures normalization within
the range [0, 1]. This normalization process is
crucial for handling unstructured data
effectively, addressing convergence problems,
and improving the computational efficiency
and reliability of the learning model. Equation
(4) is utilized in the proposed model to
estimate the normalized value(s) of the input
data xi.

𝑁𝑜𝑟𝑚(𝑥𝑖) = 𝑥𝑖
′

=
𝑥𝑖 −𝑚𝑖𝑛 (𝑋)

𝑚𝑎𝑥(𝑋) − 𝑚𝑖𝑛 (𝑋)

(4
)

In equation (4), the terms min(X) and max(X)
represent the minimum and maximum values

Volume 20| July 2023 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 58

of the dataset X, respectively. These values
define the lower and upper bounds of the
normalization process.
Data normalization was applied to all input
benchmark datasets in the suggested model,
resulting in the following normalized:

[𝐷𝑖] = 𝑁𝑜𝑟𝑚(𝑖
⊂ 𝐽𝐸𝑑𝑖𝑡, 𝐼𝑉𝑌, 𝐴𝑁𝑇, 𝐶𝐴𝑀𝐸𝐿)

(
5
)

3.1.5 Heuristic Driven Neuro-
Computing Model for SDP

Once the input data or selected features from
each dataset were normalized, the proposed
model then proceeded with the two-class
classification using the heuristic-driven neuro-
computing model (HNC). The HNC model is a
key component of the study, and its derivation
and functioning are described in detail below:

3.1.5.1 Independent and Dependent
Variable Definition

The primary aim of this study is to explore the
association between various metrics and the
likelihood of software faults. It is essential to
recognize that the relationship between
measurements and fault proneness at the class
level is not linear. To tackle these challenges,
the study used defects as the dependent
variable while considering specific CK metrics
as independent variables. The objective is to
establish a correlation between the occurrence
of faults in a class and the CK metrics. The
analysis in this thesis examines the impact of
17 CK metrics on the occurrence of faults, as
illustrated below:

𝐹𝑎𝑢𝑙𝑡𝑠 = 𝑓(𝑊𝑀𝐶,𝐷𝐼𝑇,𝑁𝑂𝐶, 𝐶𝐵𝑂, 𝑅𝐹𝐶, 𝐿𝐶𝑂𝑀, 𝐶𝑎, 𝐶𝑒, 𝑁𝑃𝑀,
𝐷𝐴𝑀,𝑀𝑂𝐴,𝑀𝐹𝐴, 𝐶𝐴𝑀, 𝐶𝐶, 𝐿𝑂𝐶, 𝐶𝐵𝑀, 𝐴𝑀𝐶,)

(6)

3.1.5.2 Neu-Computing Model:

Definition
Over the years, artificial intelligence systems
have made significant advancements, drawing
inspiration from biological neural networks
and their functioning. Researchers from
diverse fields have utilized Artificial Neural
Networks (ANNs) to solve various
computational problems. Traditional
mechanisms for computational problem-
solving have shown limitations in performance,
leading to the emergence of ANNs as a
promising technique. ANNs have become a

preferred alternative for addressing major
computational and decision-oriented issues,
including software defect prediction and
classification in this thesis.
The history of ANN's development can be
divided into three phases. The first phase,
during the 1940s, saw significant contributions
from researchers like McCulloch and Pitts. The
second phase, in the 1960s, involved
researchers such as Rosenblatt and Minsky et
al., who proposed theories like perceptron
convergence and highlighted the limitations of
simple perceptron-based NN. This phase
motivated researchers to work on optimizing
ANN networks for efficient applications in
computer science, lasting for about 20 years.
The third phase emerged in the 1980s when
ANNs achieved significant breakthroughs.
During this time, Hopfield's energy approach
was introduced, and the back-propagation
algorithm became a revolutionary
development, especially for multilayer
perceptrons. It underwent several
optimizations and improvements. Various
researchers have contributed to the continuous
development and refinement of ANN
techniques throughout the years.

3.1.5.3 Computational Models of
Neurons

The neuron formula computes the weighted
sum of its n input signals, represented as xj = 1,
2, ..., n. If the total sum exceeds a pre-defined
threshold U, the neuron generates an output of
1; otherwise, the output is 0.

𝑦 = 𝜃 (∑𝑤𝑗

𝑛

𝑗=1

𝑥𝑗 − 𝑢)

(7)

The neuron's formula incorporates a periodic
function θ () with a unit step at 0, and the
relationship between the synapse weight and
the jth input is represented by wj. The
threshold U is considered as another weight w0
= -U, attached to the neuron, with a constant
input x0 = 1. Positive weights are associated
with excitatory synapses, while negative
weights are linked to inhibitory synapses.
McCulloch and Pitts demonstrated that when
the weights are appropriately chosen, a
synchronous arrangement of such neurons can
perform universal computations.

Volume 20| July 2023 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 59

The McCulloch-Pitts neuron is biologically
inspired, where axons and dendrites are
likened to wires and linkages, synapses are
represented by connection weights, and
neuronal activity is approximated by the
activation function. However, the model has
certain assumptions that don't completely
mirror actual neuron behavior. To enhance the
model's capabilities, various activation
functions have been introduced, such as
piecewise linear, sigmoid, or Gaussian
functions. Among these, the sigmoid function,
particularly the logistic function, is commonly
used in Artificial Neural Networks (ANNs) due
to its smoothness and favorable asymptotic
properties.

𝑔(𝑥) =
1

(1 + 𝑒𝑥𝑝−𝛽𝑥)

(8)

3.1.5.4 ANN Architectures
Artificial Neural Networks (ANNs) can be
conceptualized as weighted directed graphs,
where artificial neurons are depicted as nodes,
and directed edges symbolize connections
between neuron outputs and inputs. ANNs can
be classified into two main types based on their
connection patterns:

• Feed-forward networks: These
networks do not have loops in their
graphs, resulting in unidirectional
connections between neurons organized
into layers. The most well-known
example is the multi-layer perceptron.
Feed-forward networks produce a
single set of output values from a given
input, making them static and memory-
less, as their response to an input is
independent of the previous network
state.

• Recurrent (or feedback) networks:
These networks feature loops created
by feedback connections, making them
dynamic systems. Upon receiving a new
input pattern, the neuron outputs are
computed, and the feedback paths
modify the inputs to each neuron,
causing the network to transition to a
new state. Due to their network
architectures, recurrent networks
necessitate distinct learning algorithms
for training.

The subsequent section offers a comprehensive
overview of the learning processes for the
various types of networks mentioned earlier.

3.1.5.5 ANN Learning
Learning plays a crucial role in intelligence, and
within the domain of Artificial Neural
Networks (ANNs), it pertains to updating the
network's architecture and connection weights
to effectively accomplish a particular task.
ANNs possess the ability to learn automatically
from examples, distinguishing them from
conventional expert systems that depend on
pre-defined rules.
The field of learning in neural networks
consists of three primary paradigms:
supervised, unsupervised, and hybrid. In
supervised learning, the network is provided
with correct answers for each input pattern,
enabling it to adjust the weights accordingly.
Unsupervised learning, on the other hand,
focuses on exploring the underlying structure
and correlations in the data without explicit
correct answers. Hybrid learning combines
elements of both supervised and unsupervised
approaches to leverage their respective
advantages.
In learning theory, three important aspects are
considered: capacity, sample complexity, and
computational complexity. Capacity relates to
the network's ability to store patterns and
establish decision boundaries. Sample
complexity determines the minimum number
of training patterns required for the network to
generalize effectively. Computational
complexity, on the other hand, refers to the
time taken by learning algorithms to process
and adjust the network's weights during
training.
There are four primary types of learning rules:
error correction, Boltzmann, Hebbian, and
competitive learning. In this thesis, the error
correction model has been chosen for software
defect prediction (SDP). The error correction
rules play a vital role in enhancing the learning
process for SDP, aiming to optimize the
prediction accuracy and overall performance of
the model.

3.1.5.6 Error-Correction Rules Based
Learning

Volume 20| July 2023 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 60

In the supervised learning paradigm, the
network is given the desired outputs for each
input pattern. While learning, the actual output
y produced by the network might deviate from
the desired output d. Error-correction learning
rules function by utilizing the error signal (d -
y) to adjust the connection weights gradually,
with the objective of minimizing this error and
improving the network's accuracy in
generating the desired outputs.
The perceptron learning rule is based on this
error-correction principle and is used for
perceptrons, which are single neurons with
adjustable weights (wj, j = 1, 2, ..., n) and a
threshold U. Given an input vector x = (x1, x2, ...,
xn), the net input to the neuron is calculated as
follows:

𝒗 =∑𝑤𝑗𝑥𝑗 − 𝑢

𝒏

𝒋=𝟏

(9)

In a two-class classification scenario, the
perceptron functions as a binary classifier. If
the net input v is positive, the perceptron's
output y is +1, indicating one class. On the
other hand, if v is non-positive, the output y is
0, representing the other class. The decision
boundary, defined by a linear equation,
separates the input space into two regions,
categorizing input patterns into their
respective classes based on the sign of the net
input.
Rosenblatt [33] devised a learning procedure
to calculate the weights and threshold in a
perceptron using a set of training patterns. The
perceptron learning procedure achieves
convergence after a finite number of iterations
when training patterns are drawn from two
classes that are linearly separable, as
confirmed by the perceptron convergence
theorem. However, in real-world scenarios, it is
often uncertain whether the patterns are

linearly separable, leading to challenges in
applying the standard perceptron learning
algorithm. To address this, variations of the
learning algorithm have been proposed in the
literature to handle non-linearly separable data
and enhance the perceptron's performance in
practical applications [34].

3.1.5.7 LM-ANN Neuro-Computing for
SDP Learning

LM-ANN, regarded as one of the top neuro-
computing models, was independently
developed by Kenneth Levenberg and Donald
Marquardt. This model offers a numerical
solution for minimizing nonlinear functions
and is known for its fast and stable
convergence. In the domain of artificial neural
networks, LM-ANN is particularly well-suited
for training small- and medium-sized
problems.
The error backpropagation (EBP) algorithm,
also known as the steepest descent algorithm,
is another extensively employed method for
training neural networks. Although EBP
brought considerable advancements, its slow
convergence remains a challenge, mainly due
to the requirement for suitable step sizes and
the presence of "error valleys" caused by
varying curvature in different directions during
the optimization process.
To overcome the slow convergence issue, the
Gauss-Newton algorithm utilizes second-order
derivatives to assess the curvature of the error
surface. This enables the algorithm to find
appropriate step sizes and achieve faster
convergence. However, this improvement is
contingent on having a reasonable quadratic
approximation of the error function; otherwise,
the algorithm may diverge and lead to
undesirable results.

Volume 20| July 2023 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 61

Fig.1 Searching process of the steepest descent method
3.1.5.8 Heuristic Driven LM-ANN Neuro-

Computing for Software Defect
Prediction

Artificial Neural Networks (ANNs) emulate the
functional aspects of the human brain, allowing
them to learn from input data or patterns and
categorize unknown inputs into target
categories. The ANN model comprises three
layers: the input layer, hidden layer, and output
layer (as shown in Figure 3.2). This
architecture incorporates multiple neurons
that process input data at the hidden layers,
leading to classification at the output layer.
During the learning process, the ANN employs
error-reduction methods to calculate the
discrepancy between expected and observed
outputs, with the ultimate goal of achieving

zero-error or minimizing the error to improve
accuracy in the classification tasks.
The proposed ANN algorithm in this study
focuses on two-class classification, where each
class is classified as either Normal Class
(labeled as "1") or Faulty Class (labeled as "0").
The input features for each class of the
software are used as input to the ANN, and the
number of hidden layers can vary depending
on the specific configuration. In the input layer,
a linear activation function is applied, resulting
in an output that is identical to the input itself.
The output from the hidden layer is then fed to
the input of the output layer. The output layer
of the ANN utilizes the Sigmoid function to
produce the final output, providing the
classification result for the input data.

Fig.2 An illustration of ANN architecture with single hidden layer with one output node

𝑂ℎ =
1

1 + 𝑒−𝐼ℎ

 (10)

In equation (10), Ih represents the input at the
hidden layer. ANN is commonly defined as Y' =
f(W, X), where Y' denotes the output vector,
and X and W represent the input and weight
values, respectively. The ANN aims to minimize
a certain error function, such as mean square

error (MSE), to achieve higher accuracy, which
is estimated using equation (11).

𝑀𝑆𝐸

=
1

𝑛
∑(𝑦𝑖

′ − 𝑦𝑖)
2

𝑛

𝑖=1

(11)

Input Layer

Hidden Layer

Output Layer

OOP-CK_1

W

Wk

OOP-CK_2

OOP-CK_17

Volume 20| July 2023 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 62

In equation (11), y represents the observed
value, while yi' is the expected value.
The neuro-computing architecture utilized in
this study (Figure 2) comprises 17 input nodes,
each representing one of the 17 CK metrics
from multiple classes as individual inputs. As
the expected outputs are binary, either FAULTY
or NO-FAULTY, only one output node is
necessary. The defined ANN architecture
includes 19 hidden layers to strike a balance
between performance and computational
complexity. Thus, a total of 342 weights (17
input nodes + 1 output node) * 19 hidden
nodes) need to be estimated for fault
prediction and classification purposes.
To facilitate learning in the targeted neuro-
model (Figure 2), the proposed neuro-

computing approach involves the continuous
estimation of 342 weight parameters in each
iteration. However, this process can lead to
challenges related to convergence and
potential local minima issues, which may affect
overall performance. To address these
concerns, the researchers incorporate a
heuristic model, specifically the genetic
algorithm, to continuously fine-tune the 342
weight parameters. This strategy aims to
overcome local minima problems and enhance
the overall performance of the neuro-
computing model. The use of the genetic
algorithm is hypothesized to yield superior
results in the optimization process.

Fig.3 HCN Model: 𝑾𝒌 is the current weight, 𝑾𝒌+𝟏is the next weight, 𝑬𝒌+𝟏is the current total error, and

𝑬𝒌 is the final error

The overall training function of the targeted
LM-ANN neuro-computing model follows the
mechanism depicted in Figure 3. The core of
this model lies in equation (w_(k+1)=w_k-
(J_k^T J_k+μI)^(-1) J_k e_k), which is used to
update the weight parameters for continuous
feature learning. However, estimating 342
weight parameters over each iteration can lead
to issues like local minima and convergence. To
address this, the study applies a heuristic
model called genetic algorithm.
In the proposed model, the genetic algorithm
dynamically estimates the optimal set of

weight parameters to tune the weight
parameters in equation (w_(k+1) =w_k-(J_k^T
J_k+μI) ^ (-1) J_k e_k), which facilitates efficient
learning and yields superior results. This
approach helps the LM-ANN (Figure 3) to
overcome convergence and local minima
problems during training, enhancing the
overall performance of the model.

3.1.5.9 Heuristic Driven LM-ANN
Weight Tuning

In this study, to tackle the challenges
associated with estimating a large number of
weight parameters and to address issues like

Wk,m=1

Ek

Jacobian matrix

computation

Ek+1

Ek+1 <Emax

Ek+1 <EkEk+1>Ek

m<5

m>5

End

Error evaluation

Error evaluation restore Ek

10+= 

Wk = wk+1

kk

T

kkk eJIJww 1

1)(−

+ += 

Wk = wk+1 m=m+1

10+= 

Volume 20| July 2023 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 63

local minima and convergence, the researchers
employ a heuristic concept called Genetic
Algorithm (GA). GA draws inspiration from
Darwin's principle of selection and operates as
an evolutionary computing technique, intended
to identify optimal solutions from a pool of
potential sub-solutions. In the context of
optimizing the targeted LM-ANN, GA seeks to
enhance the learning process of the ANN by
discovering an optimal set of weight
parameters that can lead to higher accuracy in
the classification tasks.
The Genetic Algorithm (GA) begins by
initializing a random set of weights as an initial
population, where each population is
represented as binary strings encoding a
potential solution. Each candidate solution is
then assessed based on a fitness value, which
indicates its suitability as a solution. The
candidates with higher fitness values are
retained, while those with lower fitness are
eliminated. The next generation of candidate
solutions is created through a process of
crossover or reproduction, which occurs based
on predetermined probabilities for crossover
and mutation. This selection and breeding
process allows GA to iteratively improve the
population of solutions, leading to better
solutions over successive generations.
In the neuro-computing model with an i-h-o
network configuration (i input layer, h hidden
layer, and o output layer), each of the 17
software metrics is input to each input neuron.
The resulting architecture becomes 17-19-1,
with 19 hidden layers utilized to handle the
model's complexity effectively. For this specific
architecture, the total number of weights
required is N (12).

𝑁
= (𝑖 + 𝑂)
∗ ℎ

(12)

The process of creating appropriate
populations and evolving them through
successive generations continues until the
optimal target value, known as the stopping
criteria, is reached. This stopping criteria is
achieved when the set of weight parameters
results in an error of zero or near-zero during
ANN learning. In other words, the genetic
algorithm iteratively refines the populations
until the ANN's learning process achieves a
highly accurate solution.
To improve learning and fine-tune the weights,
the proposed model considers each weight
value as a gene in the chromosomes. Hence, for
a total gene length of l, the length of the
chromosome, LChrom, is determined using
equation (13).

𝐿𝐶ℎ𝑟𝑜𝑚
= 𝑁 ∗ 𝑙
= (𝑖 + 𝑂) ∗ ℎ
∗ 𝑙

(13)

In the proposed Genetic Algorithm (GA) model,
all chromosomes are used as input weights and
form the population. The fitness of each
generation is evaluated to determine their
suitability in achieving the objective of
minimizing the Mean Squared Error (MSE).
Through weight updates or tuning in each
generation, the GA model aims to find the
optimal set of weight parameters that result in
the minimum Root Mean Squared Error
(RMSE). The weights (W_k) are updated or
tuned in accordance with equation (14) in the
proposed model.

𝑊𝑘 =

{

𝑖𝑓 0 ≤ 𝑥𝑘𝑙+1 < 5

−
𝑥𝑘𝑙+2∗10

𝑙−2 + 𝑥𝑘𝑙+3∗10
𝑙−3 +⋯+ 𝑥(𝑘+1)𝑙

10𝑙−2

𝑖𝑓 5 <= 𝑥𝑘𝑙+𝑙 <= 9

+
𝑥𝑘𝑙+2∗10

𝑙−2 + 𝑥𝑘𝑙+3∗10
𝑙−3 +⋯+ 𝑥(𝑘+1)𝑙

10𝑙−2

(14)

The pseudo-code for the proposed heuristic-driven neuro-computing (HNN) model is presented in
Figure 4.

Volume 20| July 2023 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 64

Fig.4 Pseudo code for HNC

4. Results And Dıscussıon
In this section, we present the results of our
simulations and statistical analyses to assess
the performance of the proposed heuristic-
driven neuro-computing (HNC-SDP) model
compared to existing state-of-the-art models.
For the evaluation, we utilized four benchmark
datasets: IVY, CAMEL, ANT, and JEDIT, which
were obtained from the NASA PROMISE
repository for software defect prediction. The
HNC-SDP model was developed using
MATLAB2015b software and executed on a
computer with 8GB RAM and an Intel i5
processor running Microsoft Windows 10. A
detailed examination of the proposed model
and the statistical analyses are discussed in the
subsequent sections.

4.1 Characterization of Performance
The performance evaluation of the proposed
HNC-SDP model was conducted individually for

each dataset, and the corresponding confusion
metrics were derived to assess its
performance. Confusion metrics offer crucial
statistical measures, including accuracy,
precision, recall, and F-Measure, to evaluate the
effectiveness of the model. Table 1 provides a
comprehensive summary of the confusion
metrics and the corresponding statistical
parameters for each test case.
In this research, for each simulation case
involving the JEDIT, Ant, Camel, and IVY
datasets, the confusion matrix was computed
to determine the counts of true positives (TP),
true negatives (TN), false positives (FP), and
false negatives (FN). Utilizing these matrix
values, the model's performance was assessed
in terms of accuracy, precision, recall, and F-
Measure, as detailed in Table 1. These metrics
provide valuable insights into the effectiveness
of the proposed model across different
datasets.

Table.1 Performance Parameters
Parameter Mathematical

Expression
Definition

Accuracy (𝑇𝑁 + 𝑇𝑃)

(𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑃)

Indicates the percentage of
predicted fault prone
modules that are examined

Volume 20| July 2023 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 65

out of all modules.
Precision 𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)

Indicates the extent to which
repeated observations under
test conditions provide the
same findings.

F-measure
2.
𝑅𝑒𝑐𝑎𝑙𝑙. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

It creates a single score by
combining the precision and
recall numeric values, which
is specified as the harmonic
mean of the recall and
precision.

Recall 𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)

It specifies the number of
objects that must be listed.

In this study, the performance evaluation
involved using multiple input datasets, and the
overall assessment of performance was carried
out using two methods: intra-model
comparison and inter-model comparison.
These approaches allowed for a comprehensive
evaluation of the proposed model's
performance compared to other models and its
effectiveness across different datasets.
Intra-model comparison entailed a statistical
evaluation of the proposed HNC-SDP model's
performance using various input datasets,
focusing on metrics such as accuracy, precision,
recall, and F-Measure. This analysis aimed to
gauge how well the model performed across
different datasets and provided insights into its
consistency and reliability.
On the other hand, inter-model comparison
involved analyzing the relative performance of
the proposed HNC-SDP model in comparison to
different existing methods.
The detailed analysis and significance of the
simulation results are discussed in the
following sections.

4.1.1 Intra-Model Performance
Characterization

In this evaluation, the goal is to analyze the
performance of the proposed model using
various input datasets. The objective is to
assess the effectiveness of the proposed model
across different inputs and identify its
strengths and weaknesses. Additionally, this
assessment helps determine the average
performance of the proposed system, which
can be used later for comparing its relative
performance to other models (inter-model
comparison).

4.1.2 Test Case-1 IVY Dataset
The confusion metrics for the IVY dataset,
representing faulty and non-faulty (normal
class) instances, are provided in Table 2 and
Table 3. These metrics are obtained both
before and after the execution of the proposed
HNC-SDP model. The purpose of obtaining
these metrics is to compare and contrast the
results, which will help in understanding the

classification performance of the proposed model (HNC-SDP).
Table.2 Confusion matrix for IVY dataset before HNC-SDP execution

 Normal Fault/Defect
Normal 481 0
Fault/Defect 40 0

Table.3 Confusion matrix for IVY data after prediction
 Normal Fault/Defect
Normal 311 1
Fault/Defect 36 4

Volume 20| July 2023 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 66

Table 4 presents the statistical results obtained
for accuracy, precision, recall, and F-Measure.
The proposed HNC-SDP model achieved an
accuracy of 88.35%, precision of 99.36%, F-
Measure of 93.8%, and recall (sensitivity) of
88.83%. Notably, the higher F-Measure value of
0.93 indicates the effectiveness of the proposed

model even under class-imbalanced conditions.
The decrease in RMSE or MSE values over
generations, as shown in Figure 5 for different
datasets, demonstrates the efficient learning of
the proposed neuro-computing model, leading
to superior performance.

Table.4 Cumulative HNC-SDP Performance evaluation for IVY data
Accuracy Precision F-Measure Recall

0.8835 0.9936 0.9380 0.8883

Fig.5 MSE variation for HNC-SDP model over IVY dataset

In this study, the Mean Square Error (MSE) was
utilized as the fitness value during the learning
process using the proposed heuristic model.
The goal was to minimize the MSE, which
implies that the Root Mean Square Error
(RMSE) should decrease with increasing
generations as the model learns and
approaches an optimal fitness value. Following
genetic computing principles, the error should
decrease over generations. The results
obtained in this thesis, as shown in Figure 1,
Figure 2, Figure 3, and Figure 4, confirm that
the proposed heuristic-driven neuro-
computing model (HNC-SDP) performs
optimally in terms of software defect

prediction, as expected. The decreasing trend
of RMSE over generations demonstrates
effective learning and convergence, leading to
improved defect prediction accuracy.

4.1.3 Test Case-2 ANT Dataset
The proposed HNC-SDP model was also applied
to the ANT1.7 PROMISE dataset, and the
simulation results are presented below: Table
5 shows the confusion matrix of the ANT1.7
defect dataset before using the HNC-SDP model
for defect prediction. Table 6 displays the
confusion metrics obtained after applying the
HNC-SDP model (referred to as the proposed
model) for defect prediction.

Volume 20| July 2023 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 67

Table.5 Confusion matrix for ANT data before prediction

Table.6 Confusion Matrix for ANT Data After Prediction
 Normal Fault/Defect

Normal 578 0
Fault/Defect 157 9

The statistical performance results obtained
based on the confusion metrics from Table 6
are presented in Table 7. Additionally, Figure 6
illustrates the variation of Mean Squared Error

(MSE) over the learning process. The results
demonstrate the performance of the proposed
HNC-SDP model on the ANT1.7 PROMISE
dataset.

Table.7 Aggregate HNC-SDP Performance assessment for ANT data
Accuracy Precision F-Measure Recall

0.8145 0.9343 0.8867 0.8438

Fig.6 MSE variation for HNC-SDP model over ANT dataset

The results from Table 7 indicate that the
proposed HNC-SDP model achieved an
accuracy of 81.4%, precision of 93.43%, recall
(sensitivity) of 84.3%, and F-Measure of
88.67% when applied to the ANT1.7 dataset.
These performance metrics demonstrate the
effectiveness of the proposed model in defect
prediction and classification for the ANT1.7
dataset.

4.1.4 Test Case-3 JEDIT Dataset
The confusion matrix for the JEDIT dataset
before the execution of HNC-SDP is presented
in Table 8. After applying the HNC-SDP model,
the corresponding confusion matrix is shown
in Table 9. These matrices provide valuable
insights into the classification performance of
the proposed model for the JEDIT dataset.

Table.8 Confusion matrix for JEDIT data prior to prediction
 Normal Fault/Defect

Normal 481 0
Fault/Defect 11 0

 Normal Fault/Defect

Normal 578 0

Fault/Defect 166 9

Volume 20| July 2023 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 68

Table.9 Confusion matrix for JEDIT data later of prediction
 Normal Fault/Defect
Normal 481 0
Fault/Defect 10 1

The statistical results for the proposed HNC-
SDP model execution on the JEDIT dataset are
presented in Table 10. The overall performance
of the model for the JEDIT data is assessed in
terms of accuracy, precision, recall, and F-
Measure. The results indicate that the accuracy
achieved by the HNC-SDP model on the JEDIT

dataset is approximately 98%. Additionally, the
precision, recall, and F-Measure values are
found to be 100%, 100%, and 98.97%
respectively. Moreover, the MSE variation
analysis also demonstrates superior learning,
leading to optimal performance as shown in
Table 10.

Table.10 Cumulative HNC-SDP Performance evaluation for JEDIT data
Accuracy Precision Recall F-

Measure
0.9799 1 1 0.9897

Fig.7 MSE variation for HNC-SDP model over JEDIT dataset

4.1.5 Test Case-4 CAMEL Dataset

Table 11 displays the confusion matrix for the CAMEL dataset before the execution of HNC-SDP. On
the other hand, Table 12 represents the confusion matrix obtained after the execution of HNC-SDP for
software defect prediction on the CAMEL dataset.

Table.11 Confusion matrix for Camel data prior to prediction
 NON-FAULTY FAULTY

Normal 777 0
Fault/Defect 188 0

Table.12 Confusion matrix for Camel data later prediction
 NON-FAULTY FAULTY

Normal 770 7
Fault/Defect 172 16

Volume 20| July 2023 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 69

Table.13 Cumulative HNC-SDP Performance evaluation for Camel data
Accuracy Precision Recall F-

Measure

0.8114 1 0.8102 0.8952

Upon observing the results (Table 13) for the
CAMEL dataset, it is evident that the suggested
HNC-SDP model demonstrates higher
precision, although the accuracy of 81%
indicates a high level of non-linearity and
potentially lower overall performance.
However, the higher values of F-measure
(89.5%) and recall (81.2%) indicate that the
proposed SDP model can still deliver reliable
performance even with high non-linear inputs
or training data.

It is interesting to note that unlike in Figure 5,
Figure 6, and Figure 7 where the error
proneness decreased over iterations, the error
(MSE) in Figure 8 for the CAMEL dataset shows
fluctuations due to the non-uniform error
distribution. Despite this, the proposed HNC-
SDP model demonstrates robustness by quickly
stabilizing the performance with reduced error
and progressing towards the optimal fitness
value within a few iterations.

Fig.8 MSE variation for HNC-SDP model over CAMEL dataset

The swift convergence of any machine learning
model can lead to superior accuracy and avoid
saturation. In this study, the HNC-SDP model
was developed as a heuristic-driven neuro-
computing model to achieve prediction results
before encountering local minima and
convergence issues typically faced by
conventional neuro-computing models. The
employed heuristic model, an improved genetic
algorithm, ensured that the fitness value of
candidate chromosomes or sub-solutions
increased after each generation. The fitness
value in HNC-SDP was defined as the inverse of
MSE (F_i = 1/E_i), where E_i represents the
fitness value of a chromosome. The reduction

in MSE indicated better solutions and
improved learning.
The implementation of the proposed heuristic
model, as observed in Figure 5 to Figure 8,
effectively prevented local minima and
convergence problems. Additionally, the use of
SMOTE sampling followed by Min-Max
normalization helped address over-fitting and
data imbalance concerns. These factors
collectively contributed to better learning and
superior results in terms of accuracy, precision,
recall, and F-Measure (as shown in Table 4,
Table 7, Table 10, and Table 13). The overall
performance summary of the proposed HNC-
SDP model over different input datasets is
presented in Table 14.

Volume 20| July 2023 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 70

Table.14 Summary of Intra-model performance assessment

Dataset
Accuracy

(%)
Precision

(%)
F-Measure

(%)
Recall

(%)

IVY1.7 88.35 99.36 93.80 88.83

ANT1.8 81.45 93.43 88.67 84.38

JEDIT 97.99 100.00 100.00 98.97

CAMEL 81.14 100.00 81.02 89.52

4.1.6 Inter-Model Assessment

To assess the relative efficacy of the proposed
HNC-SDP machine learning model, a
comparison was made with the classical
machine learning algorithm, namely Artificial
Neural Network (ANN). The purpose of this
comparison was to determine whether the
inclusion of the proposed heuristic-driven
neuro-computing concept (HNC-SDP) led to
superior results compared to traditional ANN.

The simulation of both the proposed HNC-SDP
model and ANN was performed on four
different input datasets: ANT, IVY, JEDIT, and
CAMEL. The relative performance comparison
is illustrated in Figure 9, Figure 10, Figure 11,
and Figure 12. The data indicates that the
average fault prediction accuracy of the

proposed HNC-SDP model is 98%, while the
ANN-based SDP models achieve an average
accuracy of 75.48%. This demonstrates that the
proposed HNC-SDP model outperforms the
conventional ANN model.

Furthermore, the proposed HNC-SDP model
exhibits defect prediction accuracy of 98%,
precision of 100%, F-measure of 98.9%, and
recall efficiency of 100%. These high-
performance parameters validate the
robustness of the proposed HNC-SDP model for
software defect prediction purposes. Overall,
the results indicate that the proposed model
achieves superior performance compared to
existing ANN models for software defect
prediction.

Fig.10 Comparison of the accuracy of HNC-SDP and ANN

Volume 20| July 2023 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 71

Fig.11 Comparison of the Precision of HNC-SDP and ANN

Fig.12 Comparison of the Recall of HNC-SDP and ANN

Fig.13 Comparison of the F-Measure of HNC-SDP and ANN

The F-measure, being the harmonic mean of
precision and recall, provides a balanced
assessment of the model's performance in
defect prediction. The higher F-measure value
in the proposed HNC-SDP model indicates
better overall performance compared to the

ANN algorithm. Additionally, the higher recall
in the proposed HNC-SDP model signifies that
it is more sensitive and capable of correctly
identifying a higher proportion of true positive
instances compared to the ANN-based SDP
model.

Volume 20| July 2023 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 72

To further evaluate the effectiveness of the
proposed HNC-SDP model in comparison to
other state-of-the-art methods, a qualitative
study approach was employed. Various
literature discussing machine learning-based
software defect prediction (SDP) approaches
were reviewed, and their corresponding
performances were examined. The relative

performance analysis between the proposed
HNC-SDP model and other existing approaches
is summarized in Table 15. This comparison
demonstrates that the proposed HNC-SDP
model outperforms other existing methods in
terms of accuracy, precision, recall, and F-
measure, reaffirming its superiority in software
defect prediction.

Table.15 Various SDP strategies are compared in terms of performance

Reference
Machine Learning

Techniques
Accuracy

(%)
Precision

(%)
F-Measure

(%)
[35] LLE-SVM 81.1 82.5 80.4
[35] SVM 69.4 68.1 69.7

[36] SVM 55.3 88.0 83.2

[37] Natural Gas 94.2 - -
[37] Symbolic Regression 89.50 - -

[37] RBP-NN 80.0 - -

[36] LP 86.6 86.6 87.4
[36] Naive Based 85.6 83.1 83.9

[38] CPSO 69.2 67.6 -

[39] T-SVM 75.8 84.1 80.9

[38] GANN 73.4 81.6 -

[38] AdaBoost 79.1 82.3 -

[40] Random Forest 91.4 - -

[41] k-NN 91.8 - -

[41] C4.5 88.3 - -

[41] J 48 90.9 - -

[41] Levenberg-Marquardt 88.0 - -

[38] NNEP-Evolutionary 88.8 81.2 -

[42] PSO 78.7 - -

[37] PSO-NN 97.7 - -

Proposed HNC-SDP 97.9 1 98.9

Based on the results presented in Table.15, it is
evident that the proposed HNC-SDP model
outperforms all other existing methods in
software defect prediction. The superior
performance of the proposed model
demonstrates its robustness and effectiveness
in handling various SDP tasks.

5. Future Work
The authors of the study found that certain
intrinsic features, such as inheritance and
polymorphism, were not sufficient as
standalone features for effective classification
in large-scale software. Instead, they identified
CK metrics as a potential approach for

Volume 20| July 2023 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 73

automatic software defect prediction using
machine learning techniques.
To optimize the performance of the LM-ANN,
the authors chose to apply a GA algorithm
instead of traditional methods. It is important
to note that many existing heuristic-based
models typically use a pareto combination of
crossover and mutation probabilities, such as
0.8 and 0.2 or 0.6 and 0.4. However, this
approach can lead to a significant increase in
the search space with each generation, leading
to issues with convergence and local minima,
which can adversely affect the overall model
performance. Similarly, like other machine
learning models, the challenge of avoiding local
minima and convergence persists due to the
high number of weight estimations required
for the 17 input features

6. CONCLUSION
The growing demand for reliable and secure
software systems has highlighted the need for
effective software defect prediction (SDP)
methods. However, traditional manual fault
assessment methods for large and complex
software architectures have proven to be
challenging and resource-intensive. To address
these issues, machine learning models have
been proposed for SDP, but they often face
limitations such as class imbalance, local
minima, and convergence problems.
In this dissertation, we developed a novel and
robust heuristic-driven neuro-computing
model, called HNC-SDP, for software defect
prediction. Leveraging the Levenberg
Marquardt Neural Network (LM-ANN), the
proposed model exhibited adaptive learning,
making it suitable for non-linear feature
learning from defect data. To overcome local
minima and convergence issues associated
with high weight estimation for 17 input
features, we introduced an improved genetic
algorithm as a heuristic model to assist in
weight estimation and update during learning.
The integration of feature engineering
techniques, such as resampling and Min-Max
normalization, further enhanced the model's
performance by addressing class imbalance
and over-fitting problems.

Through extensive case studies on four
different defect datasets, including JEDIT, IVY,
CAMEL, and ANT, the HNC-SDP model
demonstrated its superiority over traditional
neural networks and other state-of-the-art
machine learning methods in terms of
accuracy, precision, recall, and F-Measure. With
accuracy reaching up to 98% and significant
improvements in performance metrics, the
proposed HNC-SDP model emerged as a highly
effective solution for real-time SDP tasks.
In conclusion, the HNC-SDP model offers a
robust and efficient approach to software
defect prediction, providing higher accuracy
and better generalization compared to classical
machine learning algorithms. By combining
adaptive learning, feature engineering, and
heuristic-driven optimization, the proposed
model shows great potential in addressing the
challenges of SDP in complex and diverse
software architectures. This research
contributes to advancing the field of software
defect prediction and offers valuable insights
for building reliable and secure software
systems.

References
[1] Q. Li and H. J. I. A. Pham, "A generalized

software reliability growth model with
consideration of the uncertainty of
operating environments," vol. 7, pp.
84253-84267, 2019.

[2] S. Martínez-Fernández et al.,
"Continuously assessing and improving
software quality with software analytics
tools: a case study," vol. 7, pp. 68219-
68239, 2019.

[3] M. Mijač and Z. Stapić, "Reusability
metrics of software components:
survey," in 26th Central European
Conference on Information and
Intelligent Systems (CECIIS 2015), 2015:
Faculty of Organization and Informatics
Varazdin.

[4] M. Lafi, J. W. Botros, H. Kafaween, A. B.
Al-Dasoqi, and A. Al-Tamimi, "Code
smells analysis mechanisms, detection
issues, and effect on software
maintainability," in 2019 IEEE Jordan
International Joint Conference on

Volume 20| July 2023 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 74

Electrical Engineering and Information
Technology (JEEIT), 2019, pp. 663-666:
IEEE.

[5] H. Liu, Q. Liu, Z. Niu, and Y. J. I. T. o. S. E.
Liu, "Dynamic and automatic feedback-
based threshold adaptation for code
smell detection," vol. 42, no. 6, pp. 544-
558, 2015.

[6] A. Baabad, H. B. Zulzalil, and S. B. J. I. A.
Baharom, "Software architecture
degradation in open source software: A
systematic literature review," vol. 8, pp.
173681-173709, 2020.

[7] F. Palomba, M. Zanoni, F. A. Fontana, A.
De Lucia, and R. J. I. T. o. S. E. Oliveto,
"Toward a smell-aware bug prediction
model," vol. 45, no. 2, pp. 194-218, 2017.

[8] J. L. B. Justo, N. M. Araujo, and A. G. J. I. L.
A. T. Garcia, "Software reuse and
continuous software development: A
systematic mapping study," vol. 16, no.
5, pp. 1539-1546, 2018.

[9] C. Diwaker et al., "A new model for
predicting component-based software
reliability using soft computing," vol. 7,
pp. 147191-147203, 2019.

[10] M.-C. Chiang, C.-Y. Huang, C.-Y. Wu, and
C.-Y. J. I. T. o. R. Tsai, "Analysis of a fault-
tolerant framework for reliability
prediction of service-oriented
architecture systems," vol. 70, no. 1, pp.
13-48, 2020.

[11] S. Maggo, C. J. I. J. o. I. T. Gupta, and C.
Science, "A machine learning based
efficient software reusability prediction
model for java based object oriented
software," vol. 6, no. 1, pp. 1-12, 2014.

[12] N. E. Fenton and M. J. I. T. o. s. e. Neil, "A
critique of software defect prediction
models," vol. 25, no. 5, pp. 675-689,
1999.

[13] N. Padhy, R. Singh, and S. C. J. C. C.
Satapathy, "Enhanced evolutionary
computing based artificial intelligence
model for web-solutions software
reusability estimation," vol. 22, no.
Suppl 4, pp. 9787-9804, 2019.

[14] Y. Liu, T. M. Khoshgoftaar, and N. J. I. T.
o. S. E. Seliya, "Evolutionary
optimization of software quality

modeling with multiple repositories,"
vol. 36, no. 6, pp. 852-864, 2010.

[15] Q. Song, M. Shepperd, M. Cartwright, and
C. J. I. T. o. s. e. Mair, "Software defect
association mining and defect
correction effort prediction," vol. 32, no.
2, pp. 69-82, 2006.

[16] S. Lessmann, B. Baesens, C. Mues, and S.
J. I. t. o. s. e. Pietsch, "Benchmarking
classification models for software defect
prediction: A proposed framework and
novel findings," vol. 34, no. 4, pp. 485-
496, 2008.

[17] J. C. Munson and T. M. J. I. T. o. s. E.
Khoshgoftaar, "The detection of fault-
prone programs," vol. 18, no. 5, p. 423,
1992.

[18] X. Huang, J. R. J. P. e. Jensen, and r.
sensing, "A machine-learning approach
to automated knowledge-base building
for remote sensing image analysis with
GIS data," vol. 63, no. 10, pp. 1185-1193,
1997.

[19] N. Ohlsson, "Quality improvement by
identification of fault-prone modules
using software design metrics," in
Proceedings: International Conference on
Software Quality, 1996, 1996, pp. 1-13.

[20] J. C. R. D. Rodríguez, R. Ruiz, and J. S.
Aguilar-Ruiz, "Searching for rules to find
defective modules in unbalanced data
sets," International Conf.in Symposium
Search on Based Software Engineering,
pp. 89–92, 2009.

[21] C. Catal and B. Diri, "Software defect
prediction using artificial immune
recognition system," in Proceedings of
the 25th conference on IASTED
international multi-conference: software
engineering, 2007, pp. 285-290: ACTA
Press Anaheim.

[22] J. Wang, B. Shen, and Y. Chen,
"Compressed C4. 5 models for software
defect prediction," in 2012 12th
International Conference on quality
software, 2012, pp. 13-16: IEEE.

[23] Y. Chen, X.-h. Shen, P. Du, and B. Ge,
"Research on software defect prediction
based on data mining," in 2010 The 2nd
International Conference on Computer

Volume 20| July 2023 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 75

and Automation Engineering (ICCAE),
2010, vol. 1, pp. 563-567: IEEE.

[24] B. Li, B. Shen, J. Wang, Y. Chen, T. Zhang,
and J. Wang, "A scenario-based
approach to predicting software defects
using compressed C4. 5 model," in 2014
IEEE 38th Annual Computer Software
and Applications Conference, 2014, pp.
406-415: IEEE.

[25] T. J. M. s. Marwala and s. processing,
"Probabilistic fault identification using
vibration data and neural networks,"
vol. 15, no. 6, pp. 1109-1128, 2001.

[26] S. R. Chidamber and C. F. J. I. T. o. s. e.
Kemerer, "A metrics suite for object
oriented design," vol. 20, no. 6, pp. 476-
493, 1994.

[27] R. Subramanyam and M. S. J. I. T. o. s. e.
Krishnan, "Empirical analysis of ck
metrics for object-oriented design
complexity: Implications for software
defects," vol. 29, no. 4, pp. 297-310,
2003.

[28] N. Nagappan, B. Murphy, and V. Basili,
"The influence of organizational
structure on software quality: an
empirical case study," in Proceedings of
the 30th international conference on
Software engineering, 2008, pp. 521-
530.

[29] T. Systä, Static and dynamic reverse
engineering techniques for Java software
systems. Tampere University Press,
2000.

[30] A. Schröter, T. Zimmermann, and A.
Zeller, "Predicting component failures at
design time," in Proceedings of the 2006
ACM/IEEE international symposium on
Empirical software engineering, 2006,
pp. 18-27.

[31] T. J. Ostrand, E. J. Weyuker, and R. M. J. I.
T. o. S. E. Bell, "Predicting the location
and number of faults in large software
systems," vol. 31, no. 4, pp. 340-355,
2005.

[32] M.-H. Tang, M.-H. Kao, and M.-H. Chen,
"An empirical study on object-oriented
metrics," in Proceedings sixth
international software metrics

symposium (Cat. No. PR00403), 1999, pp.
242-249: IEEE.

[33] F. Rosenblatt, "Principles of
Neurodynamics Spartan," New York
1962.

[34] A. K. J. Hertz, and R. G. Palmer,
"Introduction to the Theory of Neural
Computation," Boulder, CO 80309-0430,
USA CRC Press, pp. 6-11, 1991.

[35] C. Shan, B. Chen, C. Hu, J. Xue, and N. Li,
"Software defect prediction model
based on LLE and SVM," 2014.

[36] G. Y. Y. Xia, X. Jiang, and Y. Yang, "A new
metrics selection method for software
defect prediction," IEEE International
Conf. on Progress in Informatics and
Computing, pp. 433–436, 2014,.

[37] A. Shrivastava, V. J. I. J. o. C. E.
Shrivastava, and Technology, "A hybrid
model of soft computing technique for
software fault prediction," vol. 4, no. 4,
pp. 2511-2518, 2014.

[38] R. Malhotra, N. Pritam, and Y. Singh, "On
the applicability of evolutionary
computation for software defect
prediction," in 2014 International
Conference on Advances in Computing,
Communications and Informatics
(ICACCI), 2014, pp. 2249-2257: IEEE.

[39] A. C. a. S. Dhall, "Software defect
prediction using supervised learning
algorithm and unsupervised learning
algorithm," Turkish Journal of
Physiotherapy and Rehabilitation, vol.
12, pp. 2429– 2436, 2013.

[40] M. M. Askari, V. K. J. I. J. o. S. E. Bardsiri,
and I. Applications, "Software defect
prediction using a high performance
neural network," vol. 8, no. 12, pp. 177-
188, 2014.

[41] M. Singh and D. S. J. I. J. o. C. A. Salaria,
"Software defect prediction tool based
on neural network," vol. 70, no. 22,
2013.

[42] R. Verma and A. Gupta, "Software defect
prediction using two level data pre-
processing," in 2012 International
Conference on Recent Advances in
Computing and Software Systems, 2012,
pp. 311-317: IEEE.

Volume 20| July 2023 ISSN: 2795-7640

Eurasian Journal of Engineering and Technology www.geniusjournals.org

 P a g e | 76

